15 research outputs found

    Pkn is a novel partner of cyclin T2a in muscle differentiation

    No full text
    With the aim to find novel partners of human Cyclin T2a, we performed a two-hybrid screening in yeast using the full-length cDNA of this cyclin as bait, and a human heart cDNA library as preys Source. Upon several interesting genes selected, our attention has been focused on the cDNA coding for PKN alpha, a fatty acid- and Rho-activated serine/threonine protein kinase, having a catalytic domain homologous to protein kinase C family. Co-immunoprecipitation and in vitro pull-down assays independently confirmed the interaction between the two proteins. Luciferase assays, performed on NIH3T3 cell extracts after transfection with a MyoD-responsive promoter, pointed out that PKN alpha was able to enhance MyoD-dependent transcription, and that this effect was further increased when cyclin T2a was co-overexpressed. Finally, overexpression of both Cyclin T2a and PKNC alpha. in C2C12 cells strongly enhanced the expression of myogenic differentiation markers, such as Myogenin and Myosin Heavy Chain, during starvation-induced differentiation. Taken together, our data strengthen the hypothesis that cyclin T2a plays a role in muscle differentiation, and propose PKNa as a novel partner of Cyclin T2a in this process

    Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer

    No full text
    Fatty acid synthase (FASN), a key metabolic enzyme for liponeogenesis highly expressed in several human cancers, displays oncogenic properties such as resistance to apoptosis and induction of proliferation when overexpressed. To date, no mechanism has been identified to explain the oncogenicity of FASN in prostate cancer. We generated immortalized prostate epithelial cells (iPrECs) overexpressing FASN, and found that (14)C-acetate incorporation into palmitate synthesized de novo by FASN was significantly elevated in immunoprecipitated Wnt-1 when compared to isogenic cells not overexpressing FASN. Overexpression of FASN caused membranous and cytoplasmic beta-catenin protein accumulation and activation, whereas FASN knockdown by short-hairpin RNA resulted in a reduction in the extent of beta-catenin activation. Orthotopic transplantation of iPrECs overexpressing FASN in nude mice resulted in invasive tumors that overexpressed beta-catenin. A strong significant association between FASN and cytoplasmic (stabilized) beta-catenin immunostaining was found in 862 cases of human prostate cancer after computerized subtraction of the membranous beta-catenin signal (P<0.001, Spearman's rho=0.33). We propose that cytoplasmic stabilization of beta-catenin through palmitoylation of Wnt-1 and subsequent activation of the pathway is a potential mechanism of FASN oncogenicity in prostate cancer
    corecore