153 research outputs found

    Analysis of plant growth promoting potential of endophytes isolated from echinacea purpurea and lonicera japonica

    Get PDF
    Plant endophytes help in maintaining plant health by means of their biofertilizer and biocontrol attributes and, are currently being explored for their ability to produce novel biologically active compounds. Herein, we have isolated beneficial endophytic bacteria from Echinacea purpurea (EF.B3) and Lonicera japonica (LS.B11) that showed phosphate solubilization, siderophore, indole acetic acid and hydrogen cyanide production, and fixation of atmospheric nitrogen. Additionally, the endophytes also conferred antifungal activity against Fusarium sp., Rhizoctonia sp., Pythium sp. and Alternaria sp. When tested in plantae, the LS.B11 and EF.B3 strains were able to promote plant growth and control fungal infections in peaseedlings. Both strains were found to be endophytic as tested by RAPD and viability count. Based on 16S rRNA gene sequencing, we show that the LS.B11 and EF.B3 strains are related to Pseudomonas sp. And Burkholderia sp. By using degenerate primers, we identified genes related to polyketide synthases and non-ribosomal peptide synthetases in EF.B3 and LS.B11, respectively that are typically involved in the production of antimicrobial compounds. Therefore, we conclude that both endophytes can be used for increasing agriculture productivity and in the production of antimicrobial compounds for crop improvement

    GREEN SYNTHESIS AND CHARACTERIZATION OF SILVER NANO PARTICLES BY USING PSIDIUM GUAJAVA LEAF EXTRACT

    Get PDF
    In this study, rapid, simple approach was applied for synthesis of silver nanoparticles by using Psidium guajava aqueous leaf extract. The plant extract acts as both reducing agent and capping agent. The green synthesized silver nanoparticles were characterized by using physic-chemical techniques viz, UV-Visible spectroscopy, Fourier Transform Infrared Spectrophotometer [FTIR], Particle size analyser and Scanning electron microscopy. UV-Visible spectrophotometer showed absorbance peak in the range of 419nm.The compounds responsible for silver ions and the functional groups present in plant extract were identified and investigated by FTIR technique. The characterization data reveals that the particles were in crystalline in nature with an average size of 62nm. The silver nanoparticles (Ag NPs) were rapidly synthesized using aqueous extract of guava leaf with AgNO3 solution within 15min at room temperature, without the involvement of any hazardous chemicals. Keywords: Nano particles, green synthesis, Silver,  Psidium guajava and reducing agents

    ANTIOXIDANT ACTIVITY (PHENOL AND FLAVONOID CONTENT ) OF THREE DIFFERENT CULTIVARS OF PIPER BETLE L. (PIPERACEAE)

    Get PDF
    In the present study, an attempt has been made for the estimation of total phenol and flavonoid content and their radical scavenging properties using Piper betle (L.) leaves. In that, Cultivars i.e., Nov Bangla (NB), Sirugamani-1 (SGM-1) and Halisar Sanchi (HS) were selected for this study. The total phenolic content was ranged from 95.04 to 127.33 mg/100g equivalent to gallic acid and flavonoids were ranged from 51.72 to 61.08 mg/ 100g equivalent to standards of Catechin.  In vitro antioxidant activity was estimated using 1,1-diphenyl-2-picryl hydrazyl (DPPH), free radical scavenging activity, improved ABTS radical cation decolorization assay and ferric reducing antioxidant power (FRAP) assay. Among all the cultivars, The highest Phenol content (93.79%) was observed  for Sirugamani-1 by DPPH method  and highest Phenol content (96.12% & 6791.86 (Β΅g/g) was obtained  for Halisar Sanchi by ABTS assay and FRAP activity  respectively. The study revealed that the leaves of Piper betle (L.) has higher amount of antioxidant activity and it could be used for any novel drug preparation

    Large-scale inference of liver fat with neural networks on UK Biobank body MRI

    Full text link
    The UK Biobank Imaging Study has acquired medical scans of more than 40,000 volunteer participants. The resulting wealth of anatomical information has been made available for research, together with extensive metadata including measurements of liver fat. These values play an important role in metabolic disease, but are only available for a minority of imaged subjects as their collection requires the careful work of image analysts on dedicated liver MRI. Another UK Biobank protocol is neck-to-knee body MRI for analysis of body composition. The resulting volumes can also quantify fat fractions, even though they were reconstructed with a two- instead of a three-point Dixon technique. In this work, a novel framework for automated inference of liver fat from UK Biobank neck-to-knee body MRI is proposed. A ResNet50 was trained for regression on two-dimensional slices from these scans and the reference values as target, without any need for ground truth segmentations. Once trained, it performs fast, objective, and fully automated predictions that require no manual intervention. On the given data, it closely emulates the reference method, reaching a level of agreement comparable to different gold standard techniques. The network learned to rectify non-linearities in the fat fraction values and identified several outliers in the reference. It outperformed a multi-atlas segmentation baseline and inferred new estimates for all imaged subjects lacking reference values, expanding the total number of liver fat measurements by factor six

    Domain-swapped T cell receptors improve the safety of TCR gene therapy

    Get PDF
    T cells engineered to express a tumor-specific Ξ±Ξ² T cell receptor (TCR) mediate anti-tumor immunity. However, mispairing of the therapeutic Ξ±Ξ² chains with endogenous Ξ±Ξ² chains reduces therapeutic TCR surface expression and generates self-reactive TCRs. We report a general strategy to prevent TCR mispairing: swapping constant domains between the Ξ± and Ξ² chains of a therapeutic TCR. When paired, domain-swapped (ds)TCRs assemble with CD3, express on the cell surface, and mediate antigen-specific T cell responses. By contrast, dsTCR chains mispaired with endogenous chains cannot properly assemble with CD3 or signal, preventing autoimmunity. We validate this approach in cell-based assays and in a mouse model of TCR gene transfer-induced graft-versus-host disease. We also validate a related approach whereby replacement of Ξ±Ξ² TCR domains with corresponding Ξ³Ξ΄ TCR domains yields a functional TCR that does not mispair. This work enables the design of safer TCR gene therapies for cancer immunotherapy

    Conformational Plasticity of proNGF

    Get PDF
    Nerve Growth Factor is an essential protein that supports neuronal survival during development and influences neuronal function throughout adulthood, both in the central and peripheral nervous system. The unprocessed precursor of NGF, proNGF, seems to be endowed with biological functions distinct from those of the mature protein, such as chaperone-like activities and apoptotic and/or neurotrophic properties. We have previously suggested, based on Small Angle X-ray Scattering data, that recombinant murine proNGF has features typical of an intrinsically unfolded protein. Using complementary biophysical techniques, we show here new evidence that clarifies and widens this hypothesis through a detailed comparison of the structural properties of NGF and proNGF. Our data provide direct information about the dynamic properties of the pro-peptide and indicate that proNGF assumes in solution a compact globular conformation. The N-terminal pro-peptide extension influences the chemical environment of the mature protein and protects the protein from proteolytic digestion. Accordingly, we observe that unfolding of proNGF involves a two-steps mechanism. The distinct structural properties of proNGF as compared to NGF agree with and rationalise a different functional role of the precursor

    Osteoclast Activated FoxP3+ CD8+ T-Cells Suppress Bone Resorption in vitro

    Get PDF
    BACKGROUND: Osteoclasts are the body's sole bone resorbing cells. Cytokines produced by pro-inflammatory effector T-cells (T(EFF)) increase bone resorption by osteoclasts. Prolonged exposure to the T(EFF) produced cytokines leads to bone erosion diseases such as osteoporosis and rheumatoid arthritis. The crosstalk between T-cells and osteoclasts has been termed osteoimmunology. We have previously shown that under non-inflammatory conditions, murine osteoclasts can recruit naΓ―ve CD8 T-cells and activate these T-cells to induce CD25 and FoxP3 (Tc(REG)). The activation of CD8 T-cells by osteoclasts also induced the cytokines IL-2, IL-6, IL-10 and IFN-Ξ³. Individually, these cytokines can activate or suppress osteoclast resorption. PRINCIPAL FINDINGS: To determine the net effect of Tc(REG) on osteoclast activity we used a number of in vitro assays. We found that Tc(REG) can potently and directly suppress bone resorption by osteoclasts. Tc(REG) could suppress osteoclast differentiation and resorption by mature osteoclasts, but did not affect their survival. Additionally, we showed that Tc(REG) suppress cytoskeletal reorganization in mature osteoclasts. Whereas induction of Tc(REG) by osteoclasts is antigen-dependent, suppression of osteoclasts by Tc(REG) does not require antigen or re-stimulation. We demonstrated that antibody blockade of IL-6, IL-10 or IFN-Ξ³ relieved suppression. The suppression did not require direct contact between the Tc(REG) and osteoclasts. SIGNIFICANCE: We have determined that osteoclast-induced Tc(REG) can suppress osteoclast activity, forming a negative feedback system. As the CD8 T-cells are activated in the absence of inflammatory signals, these observations suggest that this regulatory loop may play a role in regulating skeletal homeostasis. Our results provide the first documentation of suppression of osteoclast activity by CD8 regulatory T-cells and thus, extend the purview of osteoimmunology
    • …
    corecore