6,165 research outputs found

    Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel

    Get PDF
    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels

    Word Length Perturbations in Certain Symmetric Presentations of Dihedral Groups

    Get PDF
    Given a finite group with a generating subset there is a well-established notion of length for a group element given in terms of its minimal length expression as a product of elements from the generating set. Recently, certain quantities called λ1\lambda_{1} and λ2\lambda_{2} have been defined that allow for a precise measure of how stable a group is under certain types of small perturbations in the generating expressions for the elements of the group. These quantities provide a means to measure differences among all possible paths in a Cayley graph for a group, establish a group theoretic analog for the notion of stability in nonlinear dynamical systems, and play an important role in the application of groups to computational genomics. In this paper, we further expose the fundamental properties of λ1\lambda_{1} and λ2\lambda_{2} by establishing their bounds when the underlying group is a dihedral group. An essential step in our approach is to completely characterize so-called symmetric presentations of the dihedral groups, providing insight into the manner in which λ1\lambda_{1} and λ2\lambda_{2} interact with finite group presentations. This is of interest independent of the study of the quantities λ1,  λ2\lambda_{1},\; \lambda_{2}. Finally, we discuss several conjectures and open questions for future consideration

    Effects of lattice distortion and Jahn–Teller coupling on the magnetoresistance of La0.7Ca0.3MnO3 and La0.5Ca0.5CoO3 epitaxial films

    Get PDF
    Studies of La0.7Ca0.3MnO3 epitaxial films on substrates with a range of lattice constants reveal two dominant contributions to the occurrence of colossal negative magnetoresistance (CMR) in these manganites: at high temperatures (T → TC, TC being the Curie temperature), the magnetotransport properties are predominantly determined by the conduction of lattice polarons, while at low temperatures (T ≪ TC/, the residual negative magnetoresistance is correlated with the substrate-induced lattice distortion which incurs excess magnetic domain wall scattering. The importance of lattice polaron conduction associated with the presence of Jahn–Teller coupling in the manganites is further verified by comparing the manganites with epitaxial films of another ferromagnetic perovskite, La0.5Ca0.5CoO3. Regardless of the differences in the substrate-induced lattice distortion, the cobaltite films exhibit much smaller negative magnetoresistance, which may be attributed to the absence of Jahn–Teller coupling and the high electron mobility that prevents the formation of lattice polarons. We therefore suggest that lattice polaron conduction associated with the Jahn–Teller coupling is essential for the occurrence of CMR, and that lattice distortion further enhances the CMR effects in the manganites

    Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains

    Full text link
    The nonlinear dynamics of collisionless Alfven trains, including resonant particle effects is studied using the kinetic nonlinear Schroedinger (KNLS) equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven waves to be sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. The combined effects of both wave nonlinearity and Landau damping result in the evolutionary formation of stationaryOA S- and arc-polarized directional and rotational discontinuities. These waveforms are freqently observed in the interplanetary plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be found at http://sdphpd.ucsd.edu/~medvedev/papers.htm

    Scanning tunneling spectroscopic studies of the pairing state of cuprate superconductors

    Get PDF
    Quasiparticle tunneling spectra of both hole-doped (p-type) and electron-doped (n-type) cuprates are studied using a low-temperature scanning tunneling microscope. The results reveal that neither the pairing symmetry nor the pseudogap phenomenon is universal among all cuprates, and that the response of n-type cuprates to quantum impurities is drastically different from that of the p-type cuprates. The only ubiquitous features among all cuprates appear to be the strong electronic correlation and the nearest-neighbor antiferromagnetic Cu2+-Cu2+ coupling in the CuO2 planes

    Pseudomonas aeruginosa cleaves the decoding center of Caenorhabditis elegans ribosomes

    Get PDF
    Pathogens such as Pseudomonas aeruginosa advantageously modify animal host physiology, for example, by inhibiting host protein synthesis. Translational inhibition of insects and mammalian hosts by P. aeruginosa utilizes the well-known exotoxin A effector. However, for the infection of Caenorhabditis elegans by P. aeruginosa, the precise pathways and mechanism(s) of translational inhibition are not well understood. We found that upon exposure to P. aeruginosa PA14, C. elegans undergoes a rapid loss of intact ribosomes accompanied by the accumulation of ribosomes cleaved at helix 69 (H69) of the 26S ribosomal RNA (rRNA), a key part of ribosome decoding center. H69 cleavage is elicited by certain virulent P. aeruginosa isolates in a quorum sensing (QS)-dependent manner and independently of exotoxin A-mediated translational repression. H69 cleavage is antagonized by the 3 major host defense pathways defined by the pmk-1, fshr-1, and zip-2 genes. The level of H69 cleavage increases with the bacterial exposure time, and it is predominantly localized in the worm\u27s intestinal tissue. Genetic and genomic analysis suggests that H69 cleavage leads to the activation of the worm\u27s zip-2-mediated defense response pathway, consistent with translational inhibition. Taken together, our observations suggest that P. aeruginosa deploys a virulence mechanism to induce ribosome degradation and H69 cleavage of host ribosomes. In this manner, P. aeruginosa would impair host translation and block antibacterial responses

    X-ray Photoemission Study of MgB2

    Full text link
    A c-axis oriented thin film and a high density sintered pellet of MgB2 have been studied by x-ray photoemission spectroscopy, and compared to measurements from MgO and MgF2 single crystals. The as-grown surface has a layer which is Mg-rich and oxidized, which is effectively removed by a nonaqueous etchant. The subsurface region of the pellet is Mg-deficient. This nonideal near-surface region may explain varied scanning tunneling spectroscopy results. The MgB2 core level and Auger signals are similar to measurements from metallic Mg and transition metal diborides, and the measured valence band is consistent with the calculated density of states.Comment: 19 pages, 6 figures; Submitted to Phys. Rev. B; added references and new data on film

    Spectroscopic Evidence for Anisotropic S-Wave Pairing Symmetry in MgB2

    Get PDF
    Scanning tunneling spectroscopy of superconducting MgB2_2 (Tc=39T_c = 39 K) were studied on high-density pellets and c-axis oriented films. The sample surfaces were chemically etched to remove surface carbonates and hydroxides, and the data were compared with calculated spectra for all symmetry-allowed pairing channels. The pairing potential (Δk\Delta_k) is best described by an anisotropic s-wave pairing model, with Δk=Δxysin2θk+Δzcos2θk\Delta_k = \Delta_{xy} \sin ^2 \theta_k + \Delta_z \cos ^2 \theta_k, where θk\theta_k is the angle relative to the crystalline c-axis, Δz8.0\Delta_z \sim 8.0 meV, and Δxy5.0\Delta_{xy} \sim 5.0 meV.Comment: 4 pages and 3 figures. Submitted to Physical Review Letters. Corresponding author: Nai-Chang Yeh (e-mail: [email protected]
    corecore