14,567 research outputs found

    Modelling one-dimensional driven diffusive systems by the Zero-Range Process

    Full text link
    The recently introduced correspondence between one-dimensional two-species driven models and the Zero-Range Process is extended to study the case where the densities of the two species need not be equal. The correspondence is formulated through the length dependence of the current emitted from a particle domain. A direct numerical method for evaluating this current is introduced, and used to test the assumptions underlying this approach. In addition, a model for isolated domain dynamics is introduced, which provides a simple way to calculate the current also for the non-equal density case. This approach is demonstrated and applied to a particular two-species model, where a phase separation transition line is calculated

    Influence of convection on microstructure

    Get PDF
    The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments

    Influence of convection on microstructure

    Get PDF
    In eutectic growth, as the solid phases grow they reject atoms to the liquid. This results in a variation of melt composition along the solid/liquid interface. In the past, mass transfer in eutectic solidification, in the absence of convection, was considered to be governed only by the diffusion induced by compositional gradients. However, mass transfer can also be generated by a temperature gradient. This is called thermotransport, thermomigration, thermal diffusion or the Soret effect. A theoretical model of the influence of the Soret effect on the growth of eutectic alloys is presented. A differential equation describing the compositional field near the interface during unidirectional solidification of a binary eutectic alloy was formulated by including the contributions of both compositional and thermal gradients in the liquid. A steady-state solution of the differential equation was obtained by applying appropriate boundary conditions and accounting for heat flow in the melt. Following that, the average interfacial composition was converted to a variation of undercooling at the interface, and consequently to microstructural parameters. The results obtained show that thermotransport can, under certain circumstances, be a parameter of paramount importance

    Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search

    Get PDF
    We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-wave signals. The methods that we present apply to data from both the resonant bar detectors that are currently in operation and the laser interferometric detectors that are in the final stages of construction and commissioning. We show that with our techniques we shall be able to perform an all-sky 2-day long coherent search of the narrow-band data from the resonant bar EXPLORER with no loss of signals with the dimensionless amplitude greater than 2.8×10−232.8\times10^{-23}.Comment: REVTeX, 26 pages, 1 figure, submitted to Phys. Rev.

    Energy diffusion in hard-point systems

    Full text link
    We investigate the diffusive properties of energy fluctuations in a one-dimensional diatomic chain of hard-point particles interacting through a square--well potential. The evolution of initially localized infinitesimal and finite perturbations is numerically investigated for different density values. All cases belong to the same universality class which can be also interpreted as a Levy walk of the energy with scaling exponent 3/5. The zero-pressure limit is nevertheless exceptional in that normal diffusion is found in tangent space and yet anomalous diffusion with a different rate for perturbations of finite amplitude. The different behaviour of the two classes of perturbations is traced back to the "stable chaos" type of dynamics exhibited by this model. Finally, the effect of an additional internal degree of freedom is investigated, finding that it does not modify the overall scenarioComment: 16 pages, 15 figure
    • …
    corecore