646 research outputs found

    Rainwater Harvesting and Treatment: State of the Art and Perspectives

    Get PDF
    Rainwater harvesting is an ancient practice currently used for flood and drought risk mitigation. It is a well-known solution with different levels of advanced technology associated with it. This study is aimed at reviewing the state of the art with regards to rainwater harvesting, treatment, and management. It focuses on the environmental and social benefits of rainwater harvesting and links them to the Sustainable Development Goals. The review identifies characteristics of laws and regulations that encourage this practice and their current limitations. It presents methodologies to design a rainwater harvesting system, describes the influence of design variables, and the impact of temporal and spatial scales on the system's performance. The manuscript also analyzes the most advanced technologies for rainwater treatment, providing insights into various processes by discussing diverse physiochemical and biological technology options that are in the early stages of development. Finally, it introduces trends and perspectives which serve to increase rainwater harvesting, water reuse, and effective management

    Redefining disease emergence to improve prioritization and macro-ecological analyses

    Get PDF
    AbstractMicrobial infections are as old as the hosts they sicken, but interest in the emergence of pathogens and the diseases they cause has been accelerating rapidly. The term ‘emerging infectious disease’ was coined in the mid-1900s to describe changes in disease dynamics in the modern era. Both the term and the phenomena it is meant to characterize have evolved and diversified over time, leading to inconsistencies and confusion. Here, we review the evolution of the term ‘emerging infectious disease’ (EID) in the literature as applied to human hosts. We examine the pathways (e.g., speciation or strain differentiation in the causative agent vs. rapid geographic expansion of an existing pathogen) by which diseases emerge. We propose a new framework for disease and pathogen emergence to improve prioritization. And we illustrate how the operational definition of an EID affects conclusions concerning the pathways by which diseases emerge and the ecological and socioeconomic drivers that elicit emergence. As EIDs appear to be increasing globally, and resources for science level off or decline, the research community is pushed to prioritize its focus on the most threatening diseases, riskiest potential pathogens, and the places they occur. The working definition of emerging infectious diseases and pathogens plays a crucial role in prioritization, but we argue that the current definitions may be impeding these efforts. We propose a new framework for classifying pathogens and diseases as “emerging” that distinguishes EIDs from emerging pathogens and novel potential pathogens. We suggest prioritization of: 1) EIDs for adaptation and mitigation, 2) emerging pathogens for preventive measures, and 3) novel potential pathogens for intensive surveillance

    Modelling Transmission of Vector-Borne Pathogens Shows Complex Dynamics When Vector Feeding Sites Are Limited

    Get PDF
    The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R0 is a non-monotonic function of the population size of host individuals (H), i.e. a value exists that maximises R0. Surprisingly, if a reduction in host population size may actually increase R0. Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models

    Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests

    Get PDF
    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming

    Testing epidemiological functional groups as predictors of avian haemosporidia patterns in southern Africa

    Get PDF
    Understanding the dynamics of multihost parasites and the roles of different host species in parasite epidemiology requires consideration of the whole animal community. Host communities may be composed of hundreds of interacting species, making it necessary to simplify the problem. One approach to summarizing the host community in a way that is relevant to the epidemiology of the parasite is to group host species into epidemiological functional groups (EpiFGs). We used EpiFGs to test our understanding of avian malaria (Plasmodium and Haemoproteus) dynamics in four communities of wetland-associated birds in southern Africa. Bird counts and captures were undertaken every 2–4 months over 2 yr and malaria was diagnosed by nested PCR. One hundred and seventy-six bird species were allocated to a set of EpiFGs according to their assumed roles in introducing and maintaining the parasite in the system. Roles were quantified as relative risks from avian foraging, roosting, and movement ecology and assumed interaction with vector species. We compared our estimated a priori risks to empirical data from 3414 captured birds from four sites and 3485 half-hour point counts. After accounting for relative avian abundance, our risk estimates significantly correlated with the observed prevalence of Haemoproteus but not Plasmodium. Although avian roosting height (for both malarial genera) and movement ecology (for Plasmodium) separately influenced prevalence, host behavior alone was not sufficient to predict Plasmodium patterns in our communities. Host taxonomy and relative abundance were also important for this parasite. Although using EpiFGs enabled us to predict the infection patterns of only one genus of heamosporidia, our approach holds promise for examining the influence of host community composition on the transmission of vector-borne parasites and identifying gaps in our understanding of host–parasite interactions. (Résumé d'auteur

    Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence

    Get PDF
    Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management
    corecore