428 research outputs found

    Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    Get PDF
    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed

    STRUCTURAL CHANGE IN THE U.S. MEAT AND POULTRY INDUSTRIES

    Get PDF
    Market structure, concentration, meat industry, poultry industry, Industrial Organization,

    CONSOLIDATION IN U.S. MEATPACKING

    Get PDF
    Meatpacking consolidated rapidly in the last two decades: slaughter plants became much larger, and concentration increased as smaller firms left the industry. We use establishment-based data from the U.S. Census Bureau to describe consolidation and to identify the roles of scale economies and technological change in driving consolidation. Through the 1970's, larger plants paid higher wages, generating a pecuniary scale diseconomy that largely offset the cost advantages that technological scale economies offered large plants. The larger plants' wage premium disappeared in the 1980's, and technological change created larger and more extensive technological scale economies. As a result, large plants realized growing cost advantages over smaller plants, and production shifted to larger plants.Concentration, consolidation, meatpacking, scale economies, structural change, Industrial Organization, Livestock Production/Industries,

    Quantifying the effects of harvesting on carbon fluxes and stocks in northern temperate forests

    Get PDF
    Harvest disturbance has substantial impacts on forest carbon (C) fluxes and stocks. The quantification of these effects is essential for the better understanding of forest C dynamics and informing forest management in the context of global change. We used a process-based forest ecosystem model, PnET-CN, to evaluate how, and by what mechanisms, clear-cuts alter ecosystem C fluxes, aboveground C stocks (AGC), and leaf area index (LAI) in northern temperate forests. We compared C fluxes and stocks predicted by the model and observed at two chronosequences of eddy covariance flux sites for deciduous broadleaf forests (DBF) and evergreen needleleaf forests (ENF) in the Upper Midwest region of northern Wisconsin and Michigan, USA. The average normalized root mean square error (NRMSE) and the Willmott index of agreement (d) for carbon fluxes, LAI, and AGC in the two chronosequences were 20% and 0.90, respectively. Simulated gross primary productivity (GPP) increased with stand age, reaching a maximum (1200–1500 g C m−2 yr−1) at 11–30 years of age, and leveled off thereafter (900–1000 g C m−2 yr−1). Simulated ecosystem respiration (ER) for both plant functional types (PFTs) was initially as high as 700–1000 g C m−2 yr−1 in the first or second year after harvesting, decreased with age (400–800 g C m−2 yr−1) before canopy closure at 10–25 years of age, and increased to 800–900 g C m−2 yr−1 with stand development after canopy recovery. Simulated net ecosystem productivity (NEP) for both PFTs was initially negative, with net C losses of 400–700 g C m−2 yr−1 for 6–17 years after clear-cuts, reaching peak values of 400–600 g C m−2 yr−1 at 14–29 years of age, and eventually stabilizing in mature forests (\u3e 60 years old), with a weak C sink (100–200 g C m−2 yr−1). The decline of NEP with age was caused by the relative flattening of GPP and gradual increase of ER. ENF recovered more slowly from a net C source to a net sink, and lost more C than DBF. This suggests that in general ENF may be slower to recover to full C assimilation capacity after stand-replacing harvests, arising from the slower development of photosynthesis with stand age. Our model results indicated that increased harvesting intensity would delay the recovery of NEP after clear-cuts, but this had little effect on C dynamics during late succession. Future modeling studies of disturbance effects will benefit from the incorporation of forest population dynamics (e.g., regeneration and mortality) and relationships between age-related model parameters and state variables (e.g., LAI) into the model

    Economic Assessment of Food Safety Regulations: The New Approach to Meat and Poultry Inspection

    Get PDF
    USDA is now requiring all Federally inspected meat and poultry processing and slaughter plants to implement a new system called Hazard Analysis and Critical Control Points (HACCP) to reduce potentially harmful microbial pathogens in the food supply. This report finds that the benefits of the new regulations, which are the medical costs and productivity losses that are prevented when foodborne illnesses are averted, will likely exceed the costs, which include spending by firms on sanitation, temperature control, planning and training, and testing. Other, nonregulatory approaches can also improve food safety, such as providing market incentives for pathogen reduction, irradiation, and education and labeling to promote safe food handling and thorough cooking.food safety, foodborne illness, microbial pathogens, meat and poultry inspection, HACCP, cost of illness, consumer education, irradiation, Food Consumption/Nutrition/Food Safety, Livestock Production/Industries,

    Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    Get PDF
    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included

    Development of scenarios for land cover, population density, impervious cover, and conservation in New Hampshire, 2010–2100

    Get PDF
    Future changes in ecosystem services will depend heavily on changes in land cover and land use, which, in turn, are shaped by human activities. Given the challenges of predicting long-term changes in human behaviors and activities, scenarios provide a framework for simulating the long-term consequences of land-cover change on ecosystem function. As input for process-based models of terrestrial and aquatic ecosystem function, we developed scenarios for land cover, population density, and impervious cover for the state of New Hampshire for 2020–2100. Key drivers of change were identified through information gathered from six sources: historical trends, existing plans relating to New Hampshire’s land-cover future, surveys, existing population scenarios, key informant interviews with diverse stakeholders, and input from subject-matter experts. Scenarios were developed in parallel with information gathering, with details added iteratively as new questions emerged. The final scenarios span a continuum from spatially dispersed development with a low value placed on ecosystem services (Backyard Amenities) to concentrated development with a high value placed on ecosystem services (the Community Amenities family). The Community family includes two population scenarios (Large Community and Small Community), to be combined with two scenarios for land cover (Protection of Wildlands and Promotion of Local Food), producing combinations that bring the total number of scenarios to six. Between Backyard Amenities and Community Amenities is a scenario based on linear extrapolations of current trends (Linear Trends). Custom models were used to simulate decadal change in land cover, population density, and impervious cover. We present raster maps and proportion of impervious cover for HUC10 watersheds under each scenario and discuss the trade-offs of our translation and modeling approach within the context of contemporary scenario projects

    Quasiperiodicity and non-computability in tilings

    Full text link
    We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any effectively closed set can be recursively transformed into a tile set so that the Turing degrees of the resulted tilings consists exactly of the upper cone based on the Turing degrees of the later.Comment: v3: the version accepted to MFCS 201

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground
    • 

    corecore