151 research outputs found

    Urgent Considerations for the Neuro-oncologic Treatment of Patients with Gliomas During the COVID-19 Pandemic.

    Get PDF
    The COVID-19 outbreak is posing unprecedented risks and challenges for all communities and healthcare systems, worldwide. There are unique considerations for many adult patients with gliomas who are vulnerable to the novel coronavirus due to older age and immunosuppression. As patients with terminal illnesses, they present ethical challenges for centers that may need to ration access to ventilator care due to insufficient critical care capacity. It is urgent for the neuro-oncology community to develop a pro-active and coordinated approach to the care of adults with gliomas in order to provide them with the best possible oncologic care while also reducing their risk of viral infection during times of potential healthcare system failure. In this article, we present an approach developed by an international multi-disciplinary group to optimize the care of adults with gliomas during this pandemic. We recommend measures to promote strict social distancing and minimize exposures for patients, address risk and benefit of all therapeutic interventions, pro-actively develop end of life plans, educate patients and caregivers and ensure the health of the multi-disciplinary neuro-oncology workforce. This pandemic is already changing neuro-oncologic care delivery around the globe. It is important to highlight opportunities to maximize the benefit and minimize the risk of glioma management during this pandemic and potentially, in the future

    Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course

    Get PDF
    The “isomorphic subtype of diffuse astrocytoma” was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-, OLIG2- and CD34-negative, nuclear ATRX-expression was retained and proliferation was low. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue, most closely related to paediatric MYB/MYBL1-altered diffuse astrocytomas and angiocentric gliomas. Half of the isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB (13/25, 52%). Gene fusions of MYBL1 or MYB with various gene partners were identified in 11/22 (50%) and were associated with an increased RNA-expression of the respective MYB-family gene. Integrating copy number alterations and available RNA sequencing data, 20/26 (77%) of isomorphic diffuse gliomas demonstrated MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure-free after surgery and all had a good outcome. In summary, we here define a distinct benign tumour class belonging to the family of MYB/MYBL1-altered gliomas. Isomorphic diffuse glioma occurs both in children and adults, has a concise morphology, frequent MYBL1 and MYB alterations and a specific DNA methylation profile. As an exclusively histological diagnosis may be very challenging and as paediatric MYB/MYBL1-altered diffuse astrocytomas may have the same gene fusions, we consider DNA methylation profiling very helpful for their identification

    Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups

    Get PDF
    BACKGROUND: Choroid plexus tumors are intraventricular neoplasms derived from the choroid plexus epithelium. A better knowledge of molecular factors involved in choroid plexus tumor biology may aid in identifying patients at risk for recurrence. METHODS: Methylation profiles were examined in 29 choroid plexus papillomas (CPPs, WHO grade I), 32 atypical choroid plexus papillomas (aCPPs, WHO grade II), and 31 choroid plexus carcinomas (CPCs, WHO grade III) by Illumina Infinium HumanMethylation450 Bead Chip Array. RESULTS: Unsupervised hierarchical clustering identified 3 subgroups: methylation cluster 1 (pediatric CPP and aCPP of mainly supratentorial location), methylation cluster 2 (adult CPP and aCPP of mainly infratentorial location), and methylation cluster 3 (pediatric CPP, aCPP, and CPC of supratentorial location). In methylation cluster 3, progression-free survival (PFS) accounted for a mean of 72 months (CI, 55-89 mo), whereas only 1 of 42 tumors of methylation clusters 1 and 2 progressed (P< .001). On stratification of outcome data according to WHO grade, all CPCs clustered within cluster 3 and were associated with shorter overall survival (mean, 105 mo [CI, 81-128 mo]) and PFS (mean, 55 mo [CI, 36-73 mo]). The aCPP of methylation cluster 3 also progressed frequently (mean, 69 mo [CI, 44-93 mo]), whereas no tumor progression was observed in aCPP of methylation clusters 1 and 2 (P< .05). Only 1 of 29 CPPs recurred. CONCLUSIONS: Methylation profiling of choroid plexus tumors reveals 3 distinct subgroups (ie, pediatric low-risk choroid plexus tumors [cluster 1], adult low-risk choroid plexus tumors [cluster 2], and pediatric high-risk choroid plexus tumors [cluster 3]) and may provide useful prognostic information in addition to histopathology

    Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations

    Get PDF
    Tumors with histological features of pilocytic astrocytoma (PA), but with increased mitotic activity and additional high-grade features (particularly microvascular proliferation and palisading necrosis) have often been designated anaplastic pilocytic astrocytomas. The status of these tumors as a separate entity has not yet been conclusively demonstrated and molecular features have only been partially characterized. We performed DNA methylation profiling of 102 histologically defined anaplastic pilocytic astrocytomas. T-distributed stochastic neighbor-embedding (t-SNE) and hierarchical clustering analysis of these 102 cases against 158 reference cases from 12 glioma reference classes revealed that a subset of 83 of these tumors share a common DNA methylation profile that is distinct from the reference classes. These 83 tumors were thus denominated DNA methylation class anaplastic astrocytoma with piloid features (MC AAP). The 19 remaining tumors were distributed amongst the reference classes, with additional testing confirming the molecular diagnosis in most cases. Median age of patients with MC AAP was 41.5 years. The most frequent localization was the posterior fossa (74%). Deletions of CDKN2A/B (66/83, 80%), MAPK pathway gene alterations (49/65, 75%, most frequently affecting NF1, followed by BRAF and FGFR1) and mutations of ATRX or loss of ATRX expression (33/74, 45%) were the most common molecular alterations. All tumors were IDH1/2 wildtype. The MGMT promoter was methylated in 38/83 tumors (45%). Outcome analysis confirmed an unfavorable clinical course in comparison to PA, but better than IDH wildtype glioblastoma. In conclusion, we show that a subset of histologically defined anaplastic pilocytic astrocytomas forms a separate DNA methylation cluster, harbors recurrent alterations in MAPK pathway genes in combination with alterations of CDKN2A/B and ATRX, affects patients who are on average older than those diagnosed with PA and has an intermediate clinical outcome

    DNA methylation-based classification of central nervous system tumours.

    Get PDF
    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology
    corecore