1,655 research outputs found

    Superwind-driven Intense H2_2 Emission in NGC 6240 II: Detailed Comparison of Kinematical and Morphological Structures of the Warm and Cold Molecular Gas

    Full text link
    We report on our new analysis of the spatial and kinematical distribution of warm and cold molecular gas in NGC 6240, which was undertaken to explore the origin of its unusually luminous H2_2 emission. By comparing three-dimensional emission-line data (in space and velocity) of CO (J=2-1) in the radio and H2_2 in the near infrared, we are able to study the H2_2 emitting efficiency, defined in terms of the intensity ratio of H2_2 to CO [II(H2_2)/II(CO)], as a function of velocity. The integrated H2_2 emitting efficiency is calculated by integrating the velocity profile of H2_2 emitting efficiency in blue, red, and total (blue + red) velocity regions of the profile. We find that (1) both the total H2_2 emitting efficiency and the blue-to-red ratio of the efficiency are larger in regions surrounding the CO and H2_2 intensity peaks, and (2) the H2_2 emitting efficiency and the kinematical conditions in the warm molecular gas are closely related to each other. A collision between the molecular gas concentration and the external superwind outflow from the southern nucleus seems plausible to explain these characteristics, since it can reproduce the enhanced emitting efficiency of blueshifted H2_2 around the molecular gas concentration, if we assume that the superwind blows from the southern nucleus toward us, hitting the entire gas concentration from behind. In this model, internal cloud-cloud collisions within the molecular gas concentration are enhanced by the interaction with the superwind outflow, and efficient and intense shock-excited H2_2 emission is expected as a result of the cloud-crushing mechanism.Comment: 12 pages, 6 figures, accepted for publication in A

    Modular Solutions to Equations of Generalized Halphen Type

    Full text link
    Solutions to a class of differential systems that generalize the Halphen system are determined in terms of automorphic functions whose groups are commensurable with the modular group. These functions all uniformize Riemann surfaces of genus zero and have qq--series with integral coefficients. Rational maps relating these functions are derived, implying subgroup relations between their automorphism groups, as well as symmetrization maps relating the associated differential systems.Comment: PlainTeX 36gs. (Formula for Hecke operator corrected.

    Irregular conformal blocks, with an application to the fifth and fourth Painlev\'e equations

    Get PDF
    We develop the theory of irregular conformal blocks of the Virasoro algebra. In previous studies, expansions of irregular conformal blocks at regular singular points were obtained as degeneration limits of regular conformal blocks; however, such expansions at irregular singular points were not clearly understood. This is because precise definitions of irregular vertex operators had not been provided previously. In this paper, we present precise definitions of irregular vertex operators of two types and we prove that one of our vertex operators exists uniquely. Then, we define irregular conformal blocks with at most two irregular singular points as expectation values of given irregular vertex operators. Our definitions provide an understanding of expansions of irregular conformal blocks and enable us to obtain expansions at irregular singular points. As an application, we propose conjectural formulas of series expansions of the tau functions of the fifth and fourth Painlev\'e equations, using expansions of irregular conformal blocks at an irregular singular point.Comment: 26 page

    An Origin of the Huge Far-Infrared Luminosity of Starburst Mergers

    Full text link
    Recently Taniguchi and Ohyama found that the higher 12^{12}CO to 13^{13}CO integrated intensity ratios at a transition JJ=1--0, R=I(12R = I(^{12}CO)/I(13/I(^{13}CO) 20\gtrsim 20, in a sample of starburst merging galaxies such as Arp 220 are mainly attributed to the depression of 13^{13}CO emission with respect to 12^{12}CO. Investigating the same sample of galaxies analyzed by Taniguchi & Ohyama, we find that there is a tight, almost linear correlation between the dust mass and 13^{13}CO luminosity. This implies that dust grains are also depressed in the high-RR starburst mergers, leading to the higher dust temperature (TdT_{\rm d}) in them because of the relative increase in the radiation density. Nevertheless, the average dust mass (MdM_{\rm d}) of the high-RR starburst mergers is higher significantly than that of non-high RR galaxies. This is naturally understood because the galaxy mergers could accumulate a lot of dust grains from their progenitor galaxies together with supply of dust grains formed newly in the star forming regions. Since LL(FIR) MdTd5\propto M_{\rm d} T_{\rm d}^5 given the dust emissivity law, Sνλ1S_\nu \propto \lambda^{-1}, the increases in both MdM_{\rm d} and TdT_{\rm d} explain well why the starburst mergers are so bright in the FIR. We discuss that the superwind activity plays an important role in destroying dust grains as well as dense gas clouds in the central region of mergers.Comment: 10 pages (aaspp4.sty), 3 postscript figures (embedded). Accepted for publication in Astrophysical Journal Letter

    Galactic Wind Signatures around High Redshift Galaxies

    Full text link
    We carry out cosmological chemodynamical simulations with different strengths of supernova (SN) feedback and study how galactic winds from star-forming galaxies affect the features of hydrogen (HI) and metal (CIV and OVI) absorption systems in the intergalactic medium at high redshift. We find that the outflows tend to escape to low density regions, and hardly affect the dense filaments visible in HI absorption. As a result, the strength of HI absorption near galaxies is not reduced by galactic winds, but even slightly increases. We also find that a lack of HI absorption for lines of sight (LOS) close to galaxies, as found by Adelberger et al., can be created by hot gas around the galaxies induced by accretion shock heating. In contrast to HI, metal absorption systems are sensitive to the presence of winds. The models without feedback can produce the strong CIV and OVI absorption lines in LOS within 50 kpc from galaxies, while strong SN feedback is capable of creating strong CIV and OVI lines out to about twice that distance. We also analyze the mean transmissivity of HI, CIV, and OVI within 1 h1^{-1} Mpc from star-forming galaxies. The probability distribution of the transmissivity of HI is independent of the strength of SN feedback, but strong feedback produces LOS with lower transmissivity of metal lines. Additionally, strong feedback can produce strong OVI lines even in cases where HI absorption is weak. We conclude that OVI is probably the best tracer for galactic winds at high redshift.Comment: 16 pages, 16 figures, ApJ in press. Higher resolution version available at http://www.ociw.edu/~dkawata/research/papers.htm

    Detection of Polarized Broad Emission in the Seyfert 2 Galaxy Mrk 573

    Full text link
    We report the discovery of the scattered emission from a hidden broad-line region (BLR) in a Seyfert 2 galaxy, Mrk 573, based on our recent spectropolarimetric observation performed at the Subaru Telescope. This object has been regarded as a type 2 AGN without a hidden BLR by the previous observations. However, our high quality spectrum of the polarized flux of Mrk 573 shows prominent broad (~3000 km/s) H_alpha emission, broad weak H_beta emission, and subtle Fe II multiplet emission. Our new detection of these indications for the presence of the hidden BLR in the nucleus of Mrk 573 is thought to be owing to the high signal-to-noise ratio of our data, but the possibility of a time variation of the scattered BLR emission is also mentioned. Some diagnostic quantities such as the IRAS color, the radio power, and the line ratio of the emission from the narrow-line region of Mrk 573 are consistent with the distributions of such quantities of type 2 AGNs with a hidden BLR. Mrk 573 is thought to be an object whose level of the AGN activity is the weakest among the type 2 AGNs with a hidden BLR. In terms of the systematic differences between the type 2 AGNs with and without a hidden BLR, we briefly comment on an interesting Seyfert 2 galaxy, Mrk 266SW, which may possess a hidden BLR but has been treated as a type 2 AGNs without a hidden BLR.Comment: 9 pages including 6 figures, to appear in The Astronomical Journa

    A new look at a polar crown cavity as observed by SDO/AIA

    Get PDF
    Context. The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere. Aims. We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process. Methods. We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb. Results. We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon). Conclusions. We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1

    Connection Formulae for Asymptotics of Solutions of the Degenerate Third Painlev\'{e} Equation. I

    Full text link
    The degenerate third Painlev\'{e} equation, u=(u)2uuτ+1τ(8ϵu2+2ab)+b2uu^{\prime \prime} = \frac{(u^{\prime})^{2}}{u} - \frac{u^{\prime}}{\tau} + \frac{1}{\tau}(-8 \epsilon u^{2} + 2ab) + \frac{b^{2}}{u}, where ϵ,bR\epsilon,b \in \mathbb{R}, and aCa \in \mathbb{C}, and the associated tau-function are studied via the Isomonodromy Deformation Method. Connection formulae for asymptotics of the general as τ±0\tau \to \pm 0 and ±i0\pm i0 solution and general regular as τ±\tau \to \pm \infty and ±i\pm i \infty solution are obtained.Comment: 40 pages, LaTeX2
    corecore