310 research outputs found

    LSD1 modulates the non-canonical integrin β3 signaling pathway in non-small cell lung carcinoma cells

    No full text
    The epigenetic writer lysine-specific demethylase 1 (LSD1) is aberrantly upregulated in many cancer types and its overexpression correlates with poor survival and tumor progression. In this study, we analysed LSD1 function in non-small cell lung cancer adenocarcinomas. Expression profiling of 182 cases of lung adenocarcinoma proved a significant correlation of LSD1 overexpression with lung adenocarcinoma progression and metastasis. KRAS-mutated lung cancer cell clones were stably silenced for LSD1 expression. RNA-seq and comprehensive pathway analysis revealed, that genes related to a recently described non-canonical integrin β3 pathway, were significantly downregulated by LSD1 silencing. Hence, invasion and self-renewal capabilities were strongly decreased. Notably, this novel defined LSD1/integrin β3 axis, was also detected in human lung adenocarcinoma specimens. Furthermore, the linkage of LSD1 to an altered expression pattern of lung-lineage specific transcription factors and genes, which are involved in alveolar epithelial differentiation, was demonstrated. Thus, our findings point to a LSD1-integrin β3 axis, conferring attributes of invasiveness and tumor progression to lung adenocarcinoma

    Profilin-1 Is Expressed in Human Atherosclerotic Plaques and Induces Atherogenic Effects on Vascular Smooth Muscle Cells

    Get PDF
    .Here we monitored profilin-1 expression in human atherosclerotic plaques by immunofluorescent staining. The effects of recombinant profilin-1 on atherogenic signaling pathways and cellular responses such as DNA synthesis (BrdU-incorporation) and chemotaxis (modified Boyden-chamber) were evaluated in cultured rat aortic and human coronary vascular smooth muscle cells (VSMCs). Furthermore, the correlation between profilin-1 serum levels and the degree of atherosclerosis was assessed in humans.<0.001 vs. no atherosclerosis or control group).Profilin-1 expression is significantly enhanced in human atherosclerotic plaques compared to the normal vessel wall, and the serum levels of profilin-1 correlate with the degree of atherosclerosis in humans. The atherogenic effects exerted by profilin-1 on VSMCs suggest an auto-/paracrine role within the plaque. These data indicate that profilin-1 might critically contribute to atherogenesis and may represent a novel therapeutic target

    Experimental constraints on the ω\omega-nucleus real potential

    Get PDF
    In a search for ω\omega mesic states, the production of ω\omega-mesons in coincidence with forward going protons has been studied in photon induced reactions on 12^{12}C for incident photon energies of 1250 - 3100 MeV. The π0γ\pi^0 \gamma pairs from decays of bound or quasi-free ω\omega-mesons have been measured with the CBELSA/TAPS detector system in coincidence with protons registered in the MiniTAPS forward array. Structures in the total energy distribution of the π0γ\pi^0 \gamma pairs, which would indicate the population and decay of bound ω 11\omega~^{11}B states, are not observed. The π0γ\pi^0 \gamma cross section of 0.3 nb/MeV/sr observed in the bound state energy regime between -100 and 0 MeV may be accounted for by yield leaking into the bound state regime because of the large in-medium width of the ω\omega-meson. A comparison of the measured total energy distribution with calculations suggests the real part V0V_0 of the ω 11\omega~^{11}B potential to be small and only weakly attractive with V0(ρ=ρ0)=15±V_0(\rho=\rho_0) = -15\pm 35(stat) ±\pm20(syst) MeV in contrast to some theoretical predictions of attractive potentials with a depth of 100 - 150 MeV.Comment: 13 pages, 8 figure

    B cell-specific conditional expression of Myd88(p.L252P) leads to the development of diffuse large B cell lymphoma in mice

    Get PDF
    The adaptor protein MYD88 is critical to relay activation of Toll-like receptor signaling to NF-{kappa}B activation.MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B cell malignancies, including diffuse large B cell lymphoma (DLBCL). 29% of activated B cell (ABC)-type DLBCL, which is characterized by constitutive activation of the NF-{kappa}B pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2. Here, we generated a novel mouse model, in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P)(the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These animals develop a lympho-proliferative disease, and occasional transformation into clonal lymphomas. The clonal disease displays morphological and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression ofBCL2 Cross-validation experiments in human DLBCL samples revealed that bothMYD88andCD79Bmutations are substantially enriched in ABC-DLBCL, compared to germinal center B cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occur with MYD88 mutations, further validating our approach. Lastly,in silicoexperiments revealed that particularly MYD88-mutant ABC-DLBCL cells display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL, which could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL

    Chondrogenic and Gliogenic Subpopulations of Neural Crest Play Distinct Roles during the Assembly of Epibranchial Ganglia

    Get PDF
    In vertebrates, the sensory neurons of the epibranchial (EB) ganglia transmit somatosensory signals from the periphery to the CNS. These ganglia are formed during embryogenesis by the convergence and condensation of two distinct populations of precursors: placode-derived neuroblasts and neural crest- (NC) derived glial precursors. In addition to the gliogenic crest, chondrogenic NC migrates into the pharyngeal arches, which lie in close proximity to the EB placodes and ganglia. Here, we examine the respective roles of these two distinct NC-derived populations during development of the EB ganglia using zebrafish morphant and mutants that lack one or both of these NC populations. Our analyses of mutant and morphant zebrafish that exhibit deficiencies in chondrogenic NC at early stages reveal a distinct requirement for this NC subpopulation during early EB ganglion assembly and segmentation. Furthermore, restoration of wildtype chondrogenic NC in one of these mutants, prdm1a, is sufficient to restore ganglion formation, indicating a specific requirement of the chondrogenic NC for EB ganglia assembly. By contrast, analysis of the sox10 mutant, which lacks gliogenic NC, reveals that the initial assembly of ganglia is not affected. However, during later stages of development, EB ganglia are dispersed in the sox10 mutant, suggesting that glia are required to maintain normal EB ganglion morphology. These results highlight novel roles for two subpopulations of NC cells in the formation and maintenance of EB ganglia: chondrogenic NC promotes the early-stage formation of the developing EB ganglia while glial NC is required for the late-stage maintenance of ganglion morphology

    An Apo-14 Promoter-Driven Transgenic Zebrafish That Marks Liver Organogenesis

    Get PDF
    Several transgenic zebrafish lines for liver development studies had been obtained in the first decade of this century, but not any transgenic GFP zebrafish lines that mark the through liver development and organogenesis were reported. In this study, we analyzed expression pattern of endogenous Apo-14 in zebrafish embryogenesis by whole-mount in situ hybridization, and revealed its expression in liver primordium and in the following liver development. Subsequently, we isolated zebrafish Apo-14 promoter of 1763 bp 5′-flanking sequence, and developed an Apo-14 promoter-driven transgenic zebrafish Tg(Apo14: GFP). And, maternal expression and post-fertilization translocation of Apo-14 promoter-driven GFP were observed in the transgenic zebrafish line. Moreover, we traced onset expression of Apo-14 promoter-driven GFP and developmental behavior of the expressed cells in early heterozygous embryos by out-crossing the Tg(Apo14: GFP) male to the wild type female. Significantly, the Apo-14 promoter-driven GFP is initially expressed around YSL beneath the embryo body at 10 hpf when the embryos develop to tail bud prominence. In about 14-somite embryos at 16–17 hpf, a typical “salt-and-pepper” expression pattern is clearly observed in YSL around the yolk sac. Then, a green fluorescence dot begins to appear between the notochord and the yolk sac adjacent to otic vesicle at about 20 hpf, which is later demonstrated to be liver primordium that gives rise to liver. Furthermore, we investigated dynamic progression of liver organogenesis in the Tg(Apo14: GFP) zebrafish, because the Apo-14 promoter-driven GFP is sustainably expressed from hepatoblasts and liver progenitor cells in liver primordium to hepatocytes in the larval and adult liver. Additionally, we observed similar morphology between the liver progenitor cells and the GFP-positive nuclei on the YSL, suggesting that they might originate from the same progenitor cells in early embryos. Overall, the current study provides a transgenic zebrafish line that marks the through liver organogenesis
    corecore