43 research outputs found

    The Subak in Diaspora: Balinese Farmers and the Subak in South Sulawesi

    Get PDF
    The subak has a long history as an irrigators’ institution on Bali. It has also spread across Indonesia along with Balinese farmers who were resettled by colonial and post-colonial governments or who have migrated spontaneously since colonial times. While subaks have been much researched in Bali itself, little is known about subaks outside Bali. Luwu District in South Sulawesi is one of the areas where thousands of Balinese families settled in the last four decades. Based on research in this transmigration area, this paper analyzes the emergence and development of the subak in relation to the development of irrigation infrastructure of a state-built irrigation system. A comparison between two Balinese settlements in the same system shows that differences in infrastructural and managerial conditions and arrangements between parts of the irrigation system were major determinants of the institutional space allowed for the subak and ways in which the subaks developed

    Physiological and cell ultrastructure disturbances in wheat seedlings generated by Chenopodium murale hairy root exudate.

    Get PDF
    Chenopodium murale L. is an invasive weed species significantly interfering with wheat crop. However, the complete nature of its allelopathic influence on crops is not yet fully understood. In the present study, the focus is made on establishing the relation between plant morphophysiological changes and oxidative stress, induced by allelopathic extract. Phytotoxic medium of C. murale hairy root clone R5 reduced the germination rate (24% less than control value) of wheat cv. NataĆĄa seeds, as well as seedling growth, diminishing shoot and root length significantly, decreased total chlorophyll content, and induced abnormal root gravitropism. The R5 treatment caused cellular structural abnormalities, reflecting on the root and leaf cell shape and organization. These abnormalities mostly included the increased number of mitochondria and reorganization of the vacuolar compartment, changes in nucleus shape, and chloroplast organization and distribution. The most significant structural changes were observed in cell wall in the form of amoeboid protrusions and folds leading to its irregular shape. These structural alterations were accompanied by an oxidative stress in tissues of treated wheat seedlings, reflected as increased level of H2O2 and other ROS molecules, an increase of radical scavenging capacity and total phenolic content. Accordingly, the retardation of wheat seedling growth by C. murale allelochemicals may represent a consequence of complex activity involving both cell structure alteration and physiological processes.This is a post-peer-review, pre-copyedit version of an article published in Protoplasma. The final authenticated version is available online at: [http://dx.doi.org/10.1007/s00709-018-1250-0

    Soil information system: use and potentials in humid and semi-arid tropics

    Get PDF
    The articles presented in this special section emanated from the researches of consortium members of the National Agricultural Innovative Project (NAIP, Component 4) of the Indian Council of Agricultural Research (ICAR), New Delhi. These researches have helped develop a soil information system (SIS). In view of the changing scenario all over the world, the need of the hour is to get assistance from a host of researchers specialized in soils, crops, geology, geography and information technology to make proper use of the datasets. Equipped with the essential knowledge of data storage and retrieval for management recommendations, these experts should be able to address the issues of land degradation, biodiversity, food security, climate change and ultimately arrive at an appropriate agricultural land-use planning. Moreover, as the natural resource information is an essential prerequisite for monitoring and predicting global environmental change with special reference to climate and land use options, the SIS needs to be a dynamic exercise to accommodate temporal datasets, so that subsequently it should result in the evolution of the soil information technology. The database developed through this NAIP would serve as an example of the usefulness of the Consortium and the research initiative of ICAR involving experts from different fields to find out the potentials of the soils of humid and semi-arid bioclimatic systems of the country

    Georeferenced soil information system: assessment of database

    Get PDF
    Land-use planning is a decision-making process that facilitates the allocation of land to different uses that provide optimal and sustainable benefit. As land-use is shaped by society–nature interaction, in land-use planning different components/facets play a significant role involving soil, water, climate, animal (ruminant/ non-ruminant) and others, including forestry and the environment needed for survival of mankind. At times these components are moderated by human interference. Thus land-use planning being a dynamic phenomenon is not guided by a single factor, but by a complex system working simultaneously,which largely affects the sustainability. To address such issues a National Agricultural Innovation Project (NAIP) on ‘Georeferenced soil information system for land-use planning and monitoring soil and land quality for agriculture’ was undertaken to develop threshold values of land quality parameters for land-use planning through quantitative land evaluation and crop modelling for dominant cropping systems in major agro-ecological sub-regions (AESRs) representing rice–wheat cropping system in the Indo-Gangetic Plains (IGP) and deep-rooted crops in the black soil regions (BSR). To assess the impact of landuse change, threshold land quality indicator values are used. A modified AESR map for agricultural landuse planning is generated for effective land-use planning

    The demography of the peripatetic researcher: evidence on highly mobile scholars from the Web of Science

    No full text
    The policy debate around researchers' geographic mobility has been moving away from a theorized zero-sum game in which countries can be winners ("brain gain") or losers ("brain drain"), and toward the concept of "brain circulation," which implies that researchers move in and out of countries and everyone benefits. Quantifying trends in researchers' movements is key to understanding the drivers of the mobility of talent, as well as the implications of these patterns for the global system of science, and for the competitive advantages of individual countries. Existing studies have investigated bilateral flows of researchers. However, in order to understand migration systems, determining the extent to which researchers have worked in more than two countries is essential. This study focuses on the subgroup of highly mobile researchers whom we refer to as "peripatetic researchers" or "super-movers." More specifically, our aim is to track the international movements of researchers who have published in more than two countries through changes in the main affiliation addresses of researchers in over 62 million publications indexed in the Web of Science database over the 1956-2016 period. Using this approach, we have established a longitudinal dataset on the international movements of highly mobile researchers across all subject categories, and in all disciplines of scholarship. This article contributes to the literature by offering for the first time a snapshot of the key features of highly mobile researchers, including their patterns of migration and return migration by academic age, the relative frequency of their disciplines, and the relative frequency of their countries of origin and destination. Among other findings, the results point to the emergence of a global system that includes the USA and China as two large hubs, and England and Germany as two smaller hubs for highly mobile researchers
    corecore