2,138 research outputs found

    Three-body recombination in a three-state Fermi gas with widely tunable interactions

    Full text link
    We investigate the stability of a three spin state mixture of ultracold fermionic 6^6Li atoms over a range of magnetic fields encompassing three Feshbach resonances. For most field values, we attribute decay of the atomic population to three-body processes involving one atom from each spin state and find that the three-body loss coefficient varies by over four orders of magnitude. We observe high stability when at least two of the three scattering lengths are small, rapid loss near the Feshbach resonances, and two unexpected resonant loss features. At our highest fields, where all pairwise scattering lengths are approaching at=−2140a0a_t = -2140 a_0, we measure a three-body loss coefficient L3≃5×10−22cm6/sL_3 \simeq 5\times 10^{-22} \mathrm{cm}^6/\mathrm{s} and a trend toward lower decay rates for higher fields indicating that future studies of color superfluidity and trion formation in a SU(3) symmetric Fermi gas may be feasible

    A Chandra Study of the Effects of a Major Merger on the Structure of Abell 2319

    Full text link
    We present an analysis of a Chandra observation of the massive, nearby galaxy cluster Abell 2319. A sharp surface brightness discontinuity--suggested by previous, lower angular resolution X-ray imaging--is clearly visible in the ACIS image. This roughly 300kpc feature suggests that a major merger is taking place with a significant velocity component perpendicular to the line of sight. The cluster emission-weighted mean temperature is 11.8+/-0.6kev, somewhat higher than previous temperature measurements. The Chandra temperature map of A2319 reveals substructure resembling that anticipated based on hydrodynamic simulations of cluster mergers. The merger feature shows a pressure change across the surface brightness discontinuity by a factor of <=2.5. The higher density side of the front has a lower temperature, suggesting the presence of a cold front similar to those in many other merging clusters. The velocity of the front is roughly sonic. We compare bulk properties of the ICM and galaxies in A2319 to the same properties in a large sample of clusters as a way of gauging the effects of the major merger. Interestingly, by comparing A2319 to a sample of 44 clusters studied with the ROSAT PSPC we find that the X-ray luminosity, isophotal size, and ICM mass are consistent with the expected values for a cluster of its temperature; in addition, the K-band galaxy light is consistent with the light--temperature scaling relation derived from a sample of about 100 clusters studied with 2MASS. Together, these results indicate either that the merger in A2319 has not been effective at altering the bulk properties of the cluster, or that there are large but correlated displacements in these quantities.Comment: 11 pages, 8 figures, ApJ Submitte

    Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li

    Full text link
    We measure a zero crossing in the scattering length of a mixture of the two lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the decrease in temperature and atom number arising from evaporation in a CO2 laser trap as a function of magnetic field B. The temperature decrease and atom loss are minimized for B=528(4) G, consistent with no evaporation. We also present preliminary calculations using potentials that have been constrained by the measured zero crossing and locate a broad Feshbach resonance at approximately 860 G, in agreement with previous theoretical predictions. In addition, our theoretical model predicts a second and much narrower Feshbach resonance near 550 G.Comment: Five pages, four figure

    Innovating Victory: Naval Technology in Three Wars

    Get PDF

    Tidal resource and interactions between multiple channels in the Goto Islands, Japan

    Get PDF
    The Goto Islands in Nagasaki Prefecture, Japan, contain three parallel channels that are suitable for tidal energy development and are the planned location for a tidal energy test centre. Energy extraction is added to a 3D numerical hydrodynamic model of the region, using a sub-grid momentum sink approach, to predict the effects of tidal development. The available resource with first-generation turbines is estimated at 50-107MW peak output. Spreading turbine thrust across the whole cross-section to prevent bypass flow results in a 64% increase in peak power in one channel, highlighting the importance of 3D over 2D modelling. The energy available for extraction in each strait appears to be independent of the level of extraction in other straits. This contrasts with theoretical and numerical studies of other multi-channel systems. The weak interactions found in this study can be traced to the hydraulic effects of energy extraction not extending to neighbouring channels due to their geometry

    Numerical simulation of exciton dynamics in Cu2O at ultra low temperatures within a potential trap

    Full text link
    We have studied theoretically the relaxation behaviour of excitons in cuprous oxide (Cu2O) at ultra low temperatures when excitons are confined within a potential trap by solving numerically the Boltzmann equation. As relaxation processes, we have included in this paper deformation potential phonon scattering, radiative and non-radiative decay and Auger decay. The relaxation kinetics has been analysed for temperatures in the range between 0.3K and 5K. Under the action of deformation potential phonon scattering only, we find for temperatures above 0.5K that the excitons reach local equilibrium with the lattice i.e. that the effective local temperature is coming down to bath temperature, while below 0.5K a non-thermal energy distribution remains. Interestingly, for all temperatures the global spatial distribution of excitons does not reach the equilibrium distribution, but stays at a much higher effective temperature. If we include further a finite lifetime of the excitons and the two-particle Auger decay, we find that both the local and the global effective temperature are not coming down to bath temperature. In the first case we find a Bose-Einstein condensation (BEC) to occur for all temperatures in the investigated range. Comparing our results with the thermal equilibrium case, we find that BEC occurs for a significantly higher number of excitons in the trap. This effect could be related to the higher global temperature, which requires an increased number of excitons within the trap to observe the BEC. In case of Auger decay, we do not find at any temperature a BEC due to the heating of the exciton gas

    Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms

    Full text link
    We report on the production of a pure sample of up to 3x10^5 optically trapped molecules from a Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach resonance. For purification a Stern-Gerlach selection technique is used that efficiently removes all trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach resonance, the gas exhibits a remarkable stability with respect to collisional decay.Comment: 4 pages, 5 figure

    Stiff knots

    Full text link
    We report on the geometry and mechanics of knotted stiff strings. We discuss both closed and open knots. Our two main results are: (i) Their equilibrium energy as well as the equilibrium tension for open knots depend on the type of knot as the square of the bridge number; (ii) Braid localization is found to be a general feature of stiff strings entanglements, while angles and knot localization are forbidden. Moreover, we identify a family of knots for which the equilibrium shape is a circular braid. Two other equilibrium shapes are found from Monte Carlo simulations. These three shapes are confirmed by rudimentary experiments. Our approach is also extended to the problem of the minimization of the length of a knotted string with a maximum allowed curvature.Comment: Submitted to Phys. Rev.
    • …
    corecore