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The Goto Islands in Nagasaki Prefecture, Japan, contain three parallel channels that are
suitable for tidal energy development and are the planned location for a tidal energy test
centre. Energy extraction is added to a 3D numerical hydrodynamic model of the region,
using a sub-grid momentum sink approach, to predict the effects of tidal development.
The available resource with first-generation turbines is estimated at 50–107 MW peak

output. Spreading turbine thrust across the whole cross-section to prevent bypass flow
results in a 64% increase in peak power in one channel, highlighting the importance of
3D over 2D modelling.
The energy available for extraction in each strait appears to be independent of the level

of extraction in other straits. This contrasts with theoretical and numerical studies of other
multi-channel systems. The weak interactions found in this study can be traced to the
hydraulic effects of energy extraction not extending to neighbouring channels due to their
geometry.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Background

In 2010 nuclear power provided 25% of Japan’s electricity [1], making Japan the third-largest producer of nuclear energy
in the world [2]. Following the tsunami of 2011 and the subsequent events at the Fukushima Daiichi nuclear power plant this
figure dropped to less than 2% (in 2012) as the nation’s reactors were taken off-line, and most of the shortfall was replaced by
fossil fuels. Lacking substantial fossil resources of its own, by 2015 Japan had become one of the world’s greatest importers of
fossil fuels, and in addition to the environmental implications this represents a significant drain on economic resources [2].
While there has been some limited resumption of nuclear generation, this is deeply unpopular with sections of the public [3].
As part of a strategy to increase domestic energy supply, the Japanese government plans for 22–24% of electricity to be gen-
erated by renewables in 2030 [4]. Work is in progress to set up a marine energy test centre, similar to the European Marine
Energy Centre in Scotland, in the Goto Islands of Nagasaki Prefecture [5].
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1.2. Geographic & hydrodynamic situation

The Goto Islands are an archipelago approximately 80 km to the west of Nagasaki city and, at their closest point, sepa-
rated from the Japanese mainland by approximately 20 km of sea (Fig. 1a). To the north is the Korea Strait, the main southern
entrance to the Sea of Japan, while to the south lies part of the East China Sea and the Pacific Ocean. A portion of flow
between these large bodies of water must pass through or around the archipelago.

Within the islands there are four channels running from north-west to south-east, three of which are approximately par-
allel and of similar dimensions: 7–8 km in length, 1–3 km in width, and 50–60 m deep in mid-channel. These are the
Tanoura, Naru and Takigawara Straits (Fig. 1b). The first two have been designated by the Japanese government as an area
for tidal energy development, and the first tidal energy convertor (TEC) is due to be installed by OpenHydro in the Naru Strait
in 2018 [6]. The fourth channel, the Wakamatsu Strait, is less than 30 m deep for most of its length and is hence unsuitable
for the TEC design considered here.

The region experiences mixed diurnal/ semi-diurnal tides. When compared to European seas, less of the energy is to be
found in the M2 constituent and a greater proportion (approx. 15% of the total) is in K1 and O1. Table 1 shows the most
important constituents.
1.3. Theoretical background & prior work

To extract tidal stream (or ‘‘hydrokinetic”) energy, a porous obstruction is placed in the flow in the form of a TEC. A pro-
portion of the kinetic energy passing through the TEC is removed for conversion to electricity and a retarding force is applied
to the flow, usually resulting in a reduction in its speed. For a given array in a given channel a there exists an optimum pro-
portion of energy removed, beyond which the flow is retarded to such an extent that the available power diminishes.

Garrett and Cummins [8] described a theoretical model of a channel between two large bodies of water, and used this to
derive an approximate formula for the power lost to a channel as a result of energy extraction at optimum yield. Their model
assumes that the extraction of energy in the channel cannot influence the elevation difference across the channel, which may
be thought of as the ‘‘head” available to the turbines.

The exportable power available from the turbines cannot exceed the power extracted from the flow, and will usually be
less. Losses include drag from the TECs’ supporting structures, turbulence generated at the turbine blades, and inefficiencies
in the conversion to electrical energy. Where the array does not fill the cross-section of a channel, some flow will divert
around it. The kinetic energy of this bypass flow is clearly not available for conversion, but some of it will still be lost from
the channel in turbulent mixing when the bypass flow meets the slower wake behind the turbine [9]. Thus, so long as finan-
cial limitations on the number of turbines do not apply, a tidal stream array occupying the entire cross-section of a channel
will always be optimal. This was demonstrated with theoretical models by Garrett and Cummins [10] and Houlsby et al. [11].

The behaviour of multiple channels has been studied from a theoretical perspective by Atwater and Lawrence [12], who
considered the available power in terms of head loss, and Cummins [13], who used the analogy of an electrical circuit.
Fig. 1. Maps showing (a) the situation of the Goto Islands with respect to Japan, and (b) the four channels running through the middle of the archipelago.



Table 1
Table showing the five most energetic tidal constituents, based on a 29
day time series of surface elevation from a combined pressure sensor
and ADCP deployment in the Naru Strait [7]. Harmonic analysis
conducted using the U-Tide software.

Constituent Proportion of total energy (%)

M2 65.2
S2 13.2
K1 9.2
O1 6.0
N2 2.7
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Practical modelling investigations of the multiple channels in the Pentland Firth, Scotland, have been conducted by Draper
et al. [14] (in two dimensions), Goward Brown et al. [15] (in three dimensions), and O’Hara Murray and Gallego [16] (in three
dimensions, with the same software used here). In all of these studies, where there are parallel sub-channels, there is a ten-
dency for exploitation of one channel to cause flow to be diverted into unexploited sub-channels, reducing the yield.

The authors are unaware of any prior resource assessments of the Goto Islands that account for the effects of energy
extraction, and hence the estimates offered by this paper may be the first available.

1.4. Outline of this paper

The work described in this paper has two goals: Firstly, to provide an initial tidal resource assessment for the Goto Islands,
and secondly to explore the behavior of the parallel channels when energy is extracted.

Section 2 describes the numerical model that was used. Sections 3–5 relate simulations using realistic TEC representa-
tions, aimed at estimating the available resource. In Section 6 we put aside the realistic TEC parameters in an effort to explore
the maximum possible extractable power in one of the channels and its effect on the other straits. Section 7 discusses our
findings and compares the behavior of the Goto Islands to that of the well-studied Pentland Firth.

2. Description of the model

Numerical simulations were conducted using the free surface three-dimensional Finite Volume Community Ocean Model
(FVCOM) [17]. The model used in this work was developed by others at Kyushu University in collaboration with the second
author. It will be summarised here, but is described more fully in [7].

The computational domain, shown in Fig. 2, consists of non-overlapping unstructured triangular mesh elements (Fig. 3).
The use of an unstructured mesh is efficient in allowing coverage of a large area with fine scale detail in areas of interest. A
typical element size of 50 m was adopted around the three narrow channels in the Goto Islands, gradually increasing to
5000 m toward the open boundary. Vertical discretization is provided by 20 equally-spaced sigma layers.
Fig. 2. Plot showing the model domain and bathymetry. The spatial coordinates are in metres, referring to the ‘‘Japan Plane Rectangular” coordinate system
zone CS1, EPSG ref 2443.



Fig. 3. Plot showing the inner part of the computational mesh. Thick red lines show the locations used for tidal turbines, as described in Section 3. Blue
points show the locations of ADCP surveys used for validation. Spatial coordinates are in metres, referring to the ‘‘Japan Plane Rectangular” coordinate
system zone CS1, EPSG ref 2443.
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The horizontal velocity components (u;v) are calculated at the centroid of each triangle while elevations are calculated at
the vertices. FVCOM is closed mathematically using a modified Mellor and Yamada level 2.5 turbulence closure scheme [18]
for vertical eddy mixing and the Smagorinsky parameterization [19] for horizontal eddy viscosity.

The model bathymetry (Fig. 2) was produced from data supplied by the Hydrographic and Oceanographic Department,
Japan Coast Guard. Eight major tidal constituents (M2, S2, K2, N2, K1, O1, P1, Q1) were forced at open boundary nodes using
amplitudes and phases based on the NAO.99Jb regional tide model [20]. The phases of these forcing constituents were then
adjusted as part of the calibration procedure to improve the agreement with measurements in the tidal straits. The model
was run in barotropic mode with no freshwater inputs or meteorological effects.

The model was validated by comparison of velocities at two locations (see Fig. 3) between ADCP measurements and
model predictions over a two-week period. Error and correlation statistics are reproduced in Table 2 and show an excellent
match in the Tanoura strait. In the Naru strait the correlation is poorer for the u-velocity, but since the flow in this location is
dominated by the north–south axis this was considered acceptable. A harmonic analysis of surface elevation at a tide gauge
station was also conducted, and the comparison between these measurements and predictions is shown graphically in Fig. 4.

2.1. Energy extraction

The code used to represent energy extraction was that of O’Hara Murray and Gallego [16], which follows the approach of
Yang et al. [21] and incorporates tidal stream energy extraction into FVCOM using a sub-grid scale momentum sink method.
This approach represents the horizontal retarding force, applied by tidal stream turbines on the flow, as additional terms in
the 3D momentum equations. The retarding force can be applied at any vertical layer, or combination of layers. Assuming a
tidal turbine is always orientated to face the current, i.e. it weathervanes to face the flow, the retarding force can be
expressed as a quadratic drag law
F ¼ 1
2
qCTAjuju ð1Þ
Table 2
Table showing RMSE and R2 statistics for comparison of depth-averaged velocities between observations and predictions at two
locations (see map in Fig. 3).

Location u-Velocity v-Velocity

RMSE (ms�1) R2 RMSE (ms�1) R2

Tanoura Strait 0.18 0.94 0.31 0.92
Naru Strait 0.26 0.79 0.24 0.93
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Fig. 4. Chart comparing predicted and observed amplitudes (left) and phases (right) of eight tidal constituents at the location of a tide gauge in Fukue City.
This location is a short distance beyond the southern edge of Fig. 3, at 32.7�N, 128.85�E. Note that phases at the open boundaries were adjusted during
calibration.
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where q is the water density, CT is the thrust coefficient of the turbine, A is the flow facing area of the turbine, and u is the
flow velocity vector. For simplicity, no supporting structures were included in the model.

FVCOM uses a mode splitting method in order to solve the 2D, depth averaged, barotropic equations, and the 3D baro-
clinic equations, with different time steps [17]. Therefore, additional terms were added to both the 2D and 3D momentum
equations. In order to allow for the turbines to span multiple vertical layers a parameter K, expressing the fraction of A occu-
pied by the turbine in each layer was included. Thus, equations for the retarding force exerted by N turbines on the fluid for
any model element, i, and for the 2D and 3D equations respectively, are
F2DðiÞ ¼ 1
2
qNðiÞCTðiÞAðiÞ

Xn

j¼1

Kði; jÞjuði; jÞjuði; jÞ ð2Þ

F3Dði; jÞ ¼ 1
2
qNðiÞCTðiÞAðiÞKði; jÞjuði; jÞjuði; jÞ ð3Þ
where j is the depth layer, and n is the total number of depth layers. NðiÞ; CTðiÞ; AðiÞ;and Kði; jÞ can all potentially vary
between mesh elements, i.e. depending on the water depth and the number and type of turbines deployed in each element.
CTðiÞ may be expressed as a function of uðiÞ using a lookup table and linear interpolation, to allow for the representation of
realistic thrust curves. A full description of the energy extraction implementation can be found in [16].

The simulated TEC was based on the OpenHydro device that has been proposed for the Naru Strait. This is a seabed-
mounted design with a diameter of 16 m, a hub height of 19 m above the seabed, and a rated capacity of 2 MW (OpenHydro,
personal communication with SY). A realistic thrust curve was applied, based on that given by Baston et al. [22] but scaled to
use a cut-in speed of 1 ms�1 and a rated speed of 3 ms�1. This rated speed was adopted because it is a speed that is regularly
encountered during spring tides in the area of interest; the turbine’s rated capacity of 2 MW would imply a rated speed of
over 3.5 ms�1, but it is unlikely that this would ever be reached. The thrust coefficient between the cut-in and rated speeds is
0.85, while above the rated speed it is scaled to provide a constant power output.

Two limitations of the current implementation of energy extraction are the assumption that TECs always face the flow
(which is unlikely to be the case with the OpenHydro design, which does not yaw) and the definition of the vertical position
of the momentum sink in terms of sigma layers, causing the simulated TECs to move up and down with the rise and fall of
the tide.
2.2. Calculation of power

Electrical power was calculated from simulated current speeds as a post-processing step. Initially, thrust was determined
using (1). Power was then estimated using
P ¼ CCFjuj ð4Þ
where CC is a coefficient that represents the conversion losses between kinetic energy in the flow and electricity. It is
acknowledged that some inaccuracy is inherent in using the same value of juj, representing an entire mesh element, in both
of the equations above (more correctly, the velocity in (1) should be the free-stream velocity and that in (4) should be the
velocity at the turbine, but neither of these values is known to the model), and correction for this is implicitly included in the
value of CC . A value of 0.5 was assigned to CC based on experimental results with a Schottel turbine reported by Jeffcoate



S. Waldman et al. / International Journal of Marine Energy 19 (2017) 332–344 337
et al. [23]. This two-stage approach is equivalent, below the rated speed, to a power coefficient of 0.425, which is within the
range shown by Bahaj et al. [24] from tank testing.
3. Single-channel scenarios

A transect across each strait between the 30 m depth contours was identified to hold TECs. This depth limitation allowed
for the full height of the TEC (27 m from base to blade tip) to remain submerged throughout the tidal cycle. Simulated tur-
bines were placed, evenly spaced, along these lines, and the number of turbines lying inside each intersected mesh element
was provided to the FVCOM model. The transects were located by inspection of the areas of highest speeds without turbines
on both flood and ebb, which were usually at or near to the narrowest parts of the channels. Their locations can be seen in
Fig. 3.

A wide range of turbine numbers was tested in each channel, from the conservative to the implausible. In the more heav-
ily exploited scenarios a single row of turbines is unrealistic, as they would be placed very close together and even overlap
and collide. However, this approach allowed the level of energy extraction in a channel to be reduced to a single parameter,
which is convenient and, in the event of performing an optimisation across multiple channels, reduces the number of degrees
of freedom. Since the purpose of this work was not to study realistic array layouts but to examine the behaviour of the chan-
nel as a whole, this was judged to be acceptable.

In order to minimise computation time, initial simulations were driven only by the M2 tidal constituent. This allows the
use of just 12.4 h of output – a single M2 cycle – as a representative time period. It was determined empirically that the
model required 3 days of spinup time before its output became fully periodic, so each scenario was run for 4 days of model
time and the output data taken from the final 12.4 h.

Fig. 5 shows the maximum and mean power output for each channel with scenarios between 5 and 1000 turbines. The
use of M2 only means that results in this section show unrealistically low levels of power, so limited attention should be paid
to the absolute power levels; of interest instead are the differences in output between different scenarios. It is clear that even
with modest numbers of TECs, additional machines offer diminishing returns. The mean power available in each strait peaks
at implausibly high levels of exploitation, ranging from 270 to 446 TECs; beyond this point, adding additional turbines gives
a negative marginal return. The maximum power also peaks in each channel, but at even higher numbers of TECs than the
mean.

O’Hara Murray and Gallego [16] noted that when simulating turbines in their correct vertical locations, as done here, a
portion of the flow would divert over and under the turbine rotors instead of passing through them (although in reality,
or in a more detailed simulation, some of the flow under the rotor would be impeded by the device’s base structure). This
behavior appears to be replicated in the Goto channels, as suggested by Fig. 6. Vertical diversion limits the power output that
can be achieved, but is unavoidable while using bottom-mounted turbines and while, in some areas, preserving clear water
above for navigation.

The use of realistic TEC arrangements will be continued for the next two sections to arrive at realistic resource estimates.
In Section 6 the TEC description will be modified to explore the maximum power that can be extracted without engineering
or navigational constraints.
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Fig. 5. Plots showing (a) maximum and (b) mean power output from the three channels with varying numbers of realistic TECs. The maximum power in the
Tanoura strait peaks at approximately 2400 TECs, beyond the limits of this plot.
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4. Interactions between channels

Fig. 7 shows the effect on mean depth-averaged current speeds of placing 100 TECs in the Naru Strait. A reduction in mean
speed of up to 0.15 ms�1 through the TECs is seen, as expected, and an increase of 0.1 ms�1 occurs at the sides of the channel
around the array. Adding impedance to the Naru Strait has only small effects on the other channels; mean speeds in the
Tanoura Strait are affected by less than 0.02 ms�1, and those in the Takigawara Strait by slightly more.

There are substantial areas of change to the north and south of the islands. These appear to be caused by changes in the
positions of eddy structures that form at the downstream ends of the channels.

The equivalent maps for the other two channels are not shown, but the qualitative results are similar: reductions in mean
speed in the exploited channel, but only small changes in other channels.

In order to provide a quantitative perspective on inter-channel effects a series of simulations was conducted, using only
the M2 constituent, with 60 TECs in each channel and in each combination of channels. Comparisons were made between the
maximum and mean power outputs of these channels, and in particular between the power provided by a scenario with two
Fig. 7. Map showing the change in mean current speed over an M2 cycle in each mesh element as a result of adding 100 TECs to the Naru Strait. Green line
shows location of turbines. Spatial coordinates are in metres in the ‘‘Japan Plane Rectangular” coordinate system zone CS1, EPSG ref 2443.



Table 3
Table showing mean and maximum outputs from different combinations of channels. 60
turbines were used in the exploited channels. Sums are on a per-timestep basis. The models
were forced with M2 only, so the power estimates will be unrealistically low.

Channels exploited Mean power (MW) Max power (MW)

Tanoura alone 3.2 8.4
Naru alone 4.3 12.3
Takigawara alone 5.6 13.8

Sum of Tanoura & Naru separately 7.4 20.3
Tanoura & Naru together 7.5 20.5

Sum of Naru & Takigawara separately 9.9 25.2
Naru & Takigawara together 10.0 25.2

Sum of all 3 separately 13.1 32.7
All 3 together 13.2 32.3
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or three channels together and the sum of the powers provided by each of those channels alone; interactions between the
channels would result in differences between these values.

The results of these simulations are shown in Table 3, and show an increase in mean power of the order of 1% from using
two channels together, indicating that some interaction does exist but that it is weak. The reason that ‘‘all 3 together” has a
lower maximum power, but a higher mean power, than the sum of 3 separately, is unclear. It may relate to slight phase dif-
ferences in the progress of the tide through the channels.

The low level of interaction between channels in Goto contrasts with the findings of Draper et al. [14] in the Pentland
Firth, where the power available in each subchannel depended markedly upon the level of exploitation in the others.
5. Estimating the resource

Thus far simulations have been driven only by the M2 constituent in order to minimise computation time. However, only
65% of tidal energy in this region is in M2 (see Table 1), and so this does not give a useful estimate of the available power.

Four ‘‘candidate scenarios” were identified to be run for 28 days (plus spinup) with eight constituents. Three corre-
sponded to low, medium and high levels of development, where for each scenario the turbines of each channel had the same
capacity factor. This was intended to represent a similar level of return on investment in each channel. The actual values of
the capacity factors are not meaningful due to both the unrealistic array layouts and the use of M2 only, and so are not
reported here. In the fourth scenario, termed ‘‘optimum”, each channel had the number of turbines that corresponded to
the greatest mean power output attainable over an M2 cycle. This ‘‘optimum” number of TECs may be different with more
constituents than with M2 only, and indeed may change with improved array layouts, but the number established here is
used as an approximation that is available while keeping computing times low. The optimum number of TECs was calculated
using simple parabolic interpolation between the highest-power scenario in Section 3 and the two either side of it.

It should be noted that this approach, where each channel is optimised independently and then the indicated level of
deployment for each combined in a single model, is not generally applicable; it is appropriate in situations such as this
one where the channels do not interact significantly with one another, and avoids the need for a more difficult simultaneous
optimisation of all channels.

Each of the four scenarios was simulated with all three channels active and with turbines in the Takigawara Strait
removed, thus including only the channels currently designated for development. Table 4 shows the mean and maximum
power outputs of each scenario, as well as the ratio of mean to maximum power output.
Table 4
Table showing the number of turbines allocated to each channel in each scenario, and the predicted power outputs. Scenarios marked ‘‘A” use only the two
channels designated for tidal development, while those marked ‘‘B” use all three.

Level of development Number of turbines Power (MW) Mean/Max

Tanoura Naru Takigawara Total Mean Max

Low (A) 5 42 0 47 4.70 23.50 20%
Medium (A) 46 88 0 134 9.67 48.38 20%
High (A) 130 190 0 320 14.08 69.01 20%
Optimum (A) 414 446 0 860 16.25 79.30 20%

Low (B) 5 42 73 120 11.93 49.49 24%
Medium (B) 46 88 112 246 17.73 75.16 24%
High (B) 130 190 182 502 22.34 97.35 23%
Optimum (B) 414 446 270 1130 24.53 106.78 23%
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It is notable that at low levels of exploitation, the Takigawara Strait is predicted to give the most power at a given capacity
factor, offering more than the other two channels combined in the ‘‘Low” scenario. At higher levels of development the Naru
strait has more potential, matching the M2-only predictions in Fig. 5. In all scenarios, the ratio of mean:max power is higher
when the Takigawara Strait is included than when it is not.
6. Exploring the maximum power in the Naru Strait

In earlier sections a realistic representation of a bottom-mounted TEC was used. As noted in Section 3, this only occupies a
portion of the water column and allows the flow to divert over and under the rotor. Additionally, the limitation of not placing
TECs in water shallower than 30 m allows large regions of horizontal diversion in some channels. In this section these restric-
tions are discarded in an effort to maximise the energy available in one channel – the Naru Strait – and look for any response
in the other channels.

Three changes were made from earlier scenarios:

1. Instead of extracting momentum from the vertical layers intersected by the rotor, the same thrust was applied evenly
across all layers. This simulates the way that energy extraction would appear in a two-dimensional model, and approx-
imates a possible future scenario where a large number of smaller TECs, with lower individual thrust, are deployed at
different depths throughout the water column. Such a deployment might be possible through designs such as the Triton
device [25] that is planned for deployment in the Bay of Fundy. The same approach of ‘‘smearing” thrust throughout the
water column was used by O’Hara Murray and Gallego [16] for some scenarios in their modelling of the Pentland Firth.

2. Instead of placing turbines along a line between the 30 m contours, the line was extended to run from coast to coast. This
is unrealistic with a natural coastline, but could be achieved through civil engineering works to provide a minimum
depth.

3. The thrust curve, previously a function of the current speed, was changed to a constant value of CT ¼ 0:85. This is because
the presence of a cut-in speed would otherwise set a limit on how far the TECs could reduce the transport through the
channel. This constant thrust coefficient is probably unrealistic, but it is certainly possible that future TECs will have cut-
in speeds below the 1 ms�1 that was used to this point.

The M2-only simulations of the Naru Strait were repeated with these modifications. Additionally, transport through the
northern mouth of the strait was recorded for each scenario. This was calculated by taking 200 sample points along a straight
line from coast to coast, extracting mean depths and depth-averaged velocities normal to this line at each point, and using
simple trapezoidal integration. The number of TECs was increased far beyond commercially realistic levels until a maximum
power output was found past which the marginal change in power for extra TECs was negative. Fig. 8 shows the power out-
put as a function of the number of turbines, and Fig. 9 relates it to the reduction in transport through the channel.

The maximum power available from the Naru Strait (M2 only) under these artificial conditions is predicted as approxi-
mately 36 MW, with between 600 and 800 turbines. This maximum occurs when transport through the channel is reduced
by 36%; additional impedance, and further reductions in transport, beyond this point result in decreased power output.
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Fig. 10. Map showing the change in mean current speed over an M2 cycle in each mesh element as a result of adding 700 TECs to the Naru Strait, covering
the full cross-section of the channel. Green line shows the location of turbines. Spatial coordinates are in metres in the ‘‘Japan Plane Rectangular” coordinate
system zone CS1, EPSG ref 2443.
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Fig. 10 shows the effect on mean current speeds of 700 turbines across the full height and width of the Naru Strait. The
effects in the exploited strait are unsurprisingly much greater than those with 100 turbines in Fig. 7. Once again, it is clear
that there is minimal effect on the other channels through the archipelago.

7. Discussion

7.1. Capacity of Naru Strait

When pushing the simulated Naru Strait to its limit of available power, through unrealistic array layouts and turbine
parameters, maximum power (36 MW) was predicted with a reduction in transport through the channel of 36%. This may
be compared against similar values found in modelling the Pentland Firth of 38% [16] and 42% [14], and is within the range
of 29–42% that is given from theory by Garrett and Cummins [8].
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The maximum power that can be removed from this channel can be compared to that predicted by the Garrett & Cum-
mins model:
Fig. 11.
with fu
Plost ¼ cqgaQmax ð5Þ

where c is set to 0.20 based on a phase lag between head and transport, measured from the model, of 24�. Using values for
Qmax and a from the model, this predicts a maximum power of 65 MW.

Garrett and Cummins noted that an assumption in their model was that there was no ‘‘back effect”, i.e. the height differ-
ence between the ends of the channel is not increased by the imposition of the turbines. As shown in Fig. 11, there is a small
but noticeable back effect in the case of the Naru Strait at optimal yield, which should cause an increase in both flow and
yield. Our calculation of power includes an efficiency factor of 0.5 in (4), and once this is taken into account our value of
36 MW is indeed slightly greater than that suggested by the simple model. We find the level of agreement between these
values encouraging.

Comparison with the realistic turbine setup used in earlier sections (Fig. 8) shows, as mentioned with respect to theory in
Section 1.3, that spreading a given thrust evenly across a channel will maximise the available power. While this is difficult to
realise with bottom-mounted TECs, and while allowing room for navigation, it is possible to design tidal energy projects to
get as close to this ideal as possible given the available technology and constraints. It is likely that some of the benefit of
filling the channel cross-section with TECs could be realised by using a lesser quantity of TECs and reducing the channel
cross-section, or increasing the impedance of bypass areas, with passive civil engineering measures. However, we have
not modelled this option and it may have severe environmental impacts.

The difference between the realistic and non-realistic scenarios, in terms of the vertical distribution of thrust, highlights
the importance of using three-dimensional models for resource assessment work – a conclusion also reached by Goward
Brown et al. [15].

7.2. Interaction between channels

In the Pentland Firth, Scotland, Draper et al. [14] found strong connections between subchannels; exploiting one led to
flow diversion into others, and exploiting all together gave more power than the sum of each channel alone. This does
not appear to be the case in the Goto Islands. While in some respects the channel systems of the Goto Islands and the Pent-
land Firth are quite similar, there are notable differences in the connectivity between their channels.

Both the Pentland Firth and the Goto channels run between large bodies of water that are strongly connected by other
routes, and hence whose surface elevations cannot be altered by changes to the transport through the channels in question
(although local changes around the channel mouth(s) are possible). Thus the head over the archipelago as a whole is approx-
imately fixed, but the distribution of the head loss within the isles may be altered by the addition of TECs.

In the Pentland Firth, the three sub-channels merge at either end into a single main channel. If a single channel is
exploited, then (assuming low impedance in unexploited channels) the maximum head available for generation is slightly
greater than the undisturbed elevation change over the length of the divided subchannel. This is because once the head
reaches this level it also affects the other subchannels and causes flow to divert into them, resulting in the strong interactions
that are predicted in that region. The full potential of the elevation difference between the Atlantic and the North Sea is thus
only available if all three subchannels are exploited together.
(a) (b)
Maps showing the change in surface elevations at single timesteps during (a) flood and (b) ebb, as a result of adding 700 turbines to the Naru Strait
ll horizontal and vertical blockage.
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In Goto, by contrast, the three main channels are almost entirely distinct, opening directly into the large bodies of water
that they link without an intervening combined channel. As a result the full potential drop across the islands is available for
energy extraction in any or all of the channels independently. Because there is no combined channel, and because the chan-
nel mouths are separated by significant distances, local elevation changes at one channel mouth are greatly diminished
before they reach other channels. This results in very weak interactions between the straits.

Fig. 11 shows the changes in surface elevations as a result of adding 700 turbines to the Naru Strait. It is clear that the
elevation gradient of that channel is dramatically altered – with water level upstream of the TECs increased and that down-
stream decreased, and most of the potential drop concentrated on the line of turbines. This effect does propagate weakly
beyond the ends of the channel, in particular to the south, and this is probably because the bay-like shape of the archipelago
here acts as a buffer between the Naru Strait and the South China Sea. However, this wider effect is small (generally < 1 cm)
and there is almost no change in the elevation drop across the other straits.

While there seems to be a satisfactory explanation for the behaviors of the two locations mentioned here, it would be
beneficial to establish a more general description of the interactions of parallel channels.
7.3. Resource estimation

Estimating resource in the channels of Goto is more straightforward than in some areas because the channels do not sig-
nificantly affect one another. In other areas it would be necessary to perform a difficult optimisation with at least as many
degrees of freedom as there are channels, but in Goto one can simply arrive at a resource estimate for each channel and sum
them.

In this case the number of turbines required to obtain the greatest possible mean output from each channel is very high,
and unlikely to be commercially viable. Therefore, in addition to optimising for mean power, we have selected three arbitrary
scenarios which have equal capacity factors (CF) in each channel. These scenarios were each run for 28 days with eight tidal
constituents, and we report a maximum (peak) and mean (time-averaged) power for each scenario. The total available power
from the three channels reaches maxima of 49.5, 75.2, and 97.4 MW at low, medium and high levels of exploitation respec-
tively. The mean power in each scenario is consistently 23–24% of the maximum. There is a greater difference between mean
and maximum here than is common in European waters, which maymake development slightly less economically attractive.
The relatively high variation in this study area can be attributed to its mixed diurnal and semidiurnal tides.

The maximum available resource in just the Tanoura and Naru straits, which are those designated for tidal energy devel-
opment, is 23.5, 48.4, or 69.0 MW for the three scenarios. It is interesting to note that the channel with the greatest output in
the low deployment scenario (probably the most economically attractive scenario) is the Takigawara Strait, which is not
within the designated development area. Omitting the Takigawara Strait also reduces the Mean:Max power ratio to 20%.

The Wakamatsu Strait has been excluded from this study due to its shallow depth. However, future generations of TEC
design may be able to operate in a wider range of speeds and water depths [26], and hence may open this additional channel
to exploitation as well as increasing the power available from the other straits due to lower cut-in speeds.

The relatively modest capacities of these channels means that, even at quite low levels of development, TECs’ perfor-
mances within any single channel will not be independent of one another. This will have implications for the management
of the planned marine energy test centre, where a number of device developers might be testing different technologies
within the same channel and may be affected by each others’ activities.
8. Conclusions

In this work, numerical modelling has been used to predict the effects of tidal energy extraction from the Tanoura, Naru
and Takigawara Straits in the Goto Islands using tidal energy converters (TECs) of the type planned by OpenHydro for
deployment in the region. We estimate that between 24 and 79 MW of power is available, depending on the level of devel-
opment, from the designated tidal energy zone, and that between 50 and 107 MW is available from all three channels
together, using the currently proposed bottom-mounted turbines (Table 4). We note that the channel with the greatest
potential at early stages of development (the Takigawara Strait) is not in the designated area.

As the level of energy extraction increases the marginal gain from adding additional turbines decreases, both because of a
reduction in transport through the channel as a result of the increased impedance and because flow tends to divert over and
under the rotors. TECs occupying more of the water column can use the same total rotor area more efficiently, which may be
achievable in future using a larger number of smaller rotors.

Because modest levels of exploitation have noticeable effects on transport, managers and clients of the planned tidal
energy test centre will need to be aware that the performance of a given device or array may be influenced by other test
activities occurring in the same channel.

The maximum power that could, in principle, be generated from the Naru strait from M2 only is estimated to be 36 MW,
in contrast with 22 MW using realistic technology. The necessary conditions for this higher output are unrealistic and
undoubtedly uneconomical, but it is possible that civil engineering works to modify the channel, together with different
designs of TEC, could permit a closer approach to this maximum. We have not studied the environmental consequences
of such works.
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There is little interaction between the channels in the Goto Islands, meaning that any or all of them can be exploited inde-
pendently of the others. This may increase the attractiveness of the area for development, as – unlike Scotland’s Pentland
Firth – it is not necessary to develop all channels to realise the full potential of one. The interaction of parallel channels
is sensitive to their geometry, and it would be useful to understand this more fully.
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