20 research outputs found

    SYNTHESIS, ANTICANCER EVALUATION AND MOLECULAR MODELING OF SOME SUBSTITUTED THIAZOLIDINONYL AND THIAZOLYL PYRAZOLE DERIVATIVES

    Get PDF
    Objective: The present work aimed to synthesize some new substituted thiazoles incorporated to pyrazole moiety starting from 1-(3-chlorophenyl)-3-(4-methoxyphenyl)-1H-pyrazole-4-carboxaldehyde (1) in order to evaluate their anticancer activity and GSTP1 inhibition in a trail to explore new potential GST inhibitors and prevent the resistance of cells to anticancer drugs. In addition, investigate the probability of the most promising cytotoxic compounds to inhibit GSTP1 enzyme via molecular docking study.Methods: The carboxaldehyde 1 was treated with substituted thiosemicarbazide in absolute ethanol to give the corresponding thiosemicarbazone derivatives 2a–d. Cyclization of 2a-d either by ethyl bromoacetate, phenacyl bromide or maleic acid anhydride furnished new thiazole derivatives 3, 4 and 5, respectively. These target compound 2-5 were screened for their GSTP1 inhibition and cytotoxic activity against HEPG-2 (human liver carcinoma), A549 (human lung carcinoma) and PC3 (human prostate carcinoma). Finally, molecular docking study of the most promising cytotoxic compounds against GSTP1 (PDB ID: 3GUS) is discussed.Results: Compounds 4a, 4b, and 4d were found to be highly active against HEPG-2 and PC-3 cancer cell lines with IC50 values ranging from 0.2±0.81 to 9.3±2.08 μM compared to doxorubicin with IC50= 37.8±1.50 and 41.1±2.01 μM, respectively. Screening of 4a, 4b and 4d against GSTP1 showed higher inhibition activity with IC50 ranging from 1.5±0.18 to 4.3±0.29 μM. Docking studies revealed the promising binding affinities of the latter compounds which match with the binding mode of the ligand, NBDHEX toward the active site of GSTP1.Conclusion: Compounds 4a, 4b and 4d were distinguished by the higher anticancer activity against HEPG-2, A-549 and PC-3 cell lines of tumor and the remarkable inhibitory activity against GSTP1

    Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    Get PDF
    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.Research supported by FAPESP (2010/11005-5 and 2010/04462) and CNPq (#471939/2010-2 and 483005/2012-6

    Novel synthesis of pyrazole-containing thiophene, 2-alkyloxy-pyridine and thieno[2,3-d]pyrimidine scaffolds as analgesic agents

    Get PDF
    ABSTRACT. A group of trisubstituted pyrazoles containing thiophen, 2-alkyloxypyridine and thieno[2,3-d]pyrimidine heterocycles were synthesized in a study for possible analgesic agents. The desired products were obtained by reaction of 2-((1-(3-chlorophenyl)-3-(4-methoxyphenyl)-1H-pyrazol-4-yl)methylene)malononitrile with sulfur in presence of TEA, followed by treatment with different reagents. Newer products were examined for their analgesic properties, among them, analog 7 showed significant analgesic effects in comparison with reference medicines activity. KEY WORDS: Trisubstituted pyrazoles, Thiophene, Alkyloxypyridine, Fused pyrimidine, Analgesic activities Bull. Chem. Soc. Ethiop. 2019, 33(3), 505-515. DOI: https://dx.doi.org/10.4314/bcse.v33i3.1

    The interplay of extracellular matrix and microbiome in urothelial bladder cancer

    No full text
    Many pathological changes in solid tumours are caused by the accumulation of genetic mutations and epigenetic molecular alterations. In addition, tumour progression is profoundly influenced by the environment surrounding the transformed cells. The interplay between tumour cells and their microenvironment has been recognized as one of the key determinants of cancer development and is being extensively investigated. Data suggest that both the extracellular matrix and the microbiota represent microenvironments that contribute to the onset and progression of tumours. Through the introduction of omics technologies and pyrosequencing analyses, a detailed investigation of these two microenvironments is now possible. In urological research, assessment of their dysregulation has become increasingly important to provide diagnostic, prognostic and predictive biomarkers for urothelial bladder cancer. Understanding the roles of the extracellular matrix and microbiota, two key components of the urothelial mucosa, in the sequelae of pathogenic events that occur in the development and progression of urothelial carcinomas will be important to overcome the shortcomings in current bladder cancer treatment strategies
    corecore