2 research outputs found

    Recombination hotspots in an extended human pseudoautosomal domain predicted from double-strand break maps and characterized by sperm-based crossover analysis

    No full text
    The human X and Y chromosomes are heteromorphic but share a region of homology at the tips of their short arms, pseudoautosomal region 1 (PAR1), that supports obligate crossover in male meiosis. Although the boundary between pseudoautosomal and sex-specific DNA has traditionally been regarded as conserved among primates, it was recently discovered that the boundary position varies among human males, due to a translocation of ~110 kb from the X to the Y chromosome that creates an extended PAR1 (ePAR). This event has occurred at least twice in human evolution. So far, only limited evidence has been presented to suggest this extension is recombinationally active. Here, we sought direct proof by examining thousands of gametes from each of two ePAR-carrying men, for two subregions chosen on the basis of previously published male X-chromosomal meiotic double-strand break (DSB) maps. Crossover activity comparable to that seen at autosomal hotspots was observed between the X and the ePAR borne on the Y chromosome both at a distal and a proximal site within the 110-kb extension. Other hallmarks of classic recombination hotspots included evidence of transmission distortion and GC-biased gene conversion. We observed good correspondence between the male DSB clusters and historical recombination activity of this region in the X chromosomes of females, as ascertained from linkage disequilibrium analysis; this suggests that this region is similarly primed for crossover in both male and female germlines, although sex-specific differences may also exist. Extensive resequencing and inference of ePAR haplotypes, placed in the framework of the Y phylogeny as ascertained by both Y microsatellites and single nucleotide polymorphisms, allowed us to estimate a minimum rate of crossover over the entire ePAR region of 6-fold greater than genome average, comparable with pedigree estimates of PAR1 activity generally. We conclude ePAR very likely contributes to the critical crossover function of PAR1

    Defining cat mitogenome variation and accounting for numts via multiplex amplification and Nanopore sequencing

    No full text
    Hair shed by domestic cats is a potentially useful source of forensic evidence. Analysable hair DNA is predominantly mitochondrial, but the recent domestication history of cats means that mtDNA diversity is low. A 402-bp control region segment is usually sequenced, defining only a small number of distinct haplotypes in populations. Previously, we used a long-amplicon approach to sequence whole mitogenomes in a sample of blood DNAs from 119 UK cats, greatly increasing observed diversity and reducing random match probabilities. To exploit this variation for forensic analysis, we here describe a multiplex system that amplifies the cat mitogenome in 60 overlapping amplicons of mean length 360 bp, followed by Nanopore sequencing. Variants detected in multiplex sequence data from unrooted hair completely mirror those from long-amplicon data from blood from the same individuals. However, applying the multiplex to matched blood DNA reveals additional sequence variants which derive from the major feline nuclear mitochondrial insertion sequence (numt), which covers 7.9 kb of the 17-kb mitogenome and exists in multiple tandem copies. We use long-amplicon Nanopore sequencing to investigate numt variation in a set of cats, together with an analysis of published genome sequences, and show that numt arrays are variable in both structure and sequence, thus providing a potential source of uncertainty when nuclear DNA predominates in a sample. Forensic application of the multiplex was demonstrated by matching hairs from a cat with skeletal remains from its putative mother, both of which shared a globally common haplotype at the control region. The random match probability in this case with the CR 402-bp segment was 0.21 and this decreased to 0.03 when considering the whole mitogenome. The developed multiplex and sequencing approach, when applied to cat hair where nuclear DNA is scarce, can provide a reliable and highly discriminating source of forensic genetic evidence from a single hair. The confounding effect of numt co-amplification in degraded samples where mixed sequences are observed can be mitigated by variant phasing, and by comparison with numt sequence diversity data, such as those presented here.</p
    corecore