1,420 research outputs found
Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules
We study the efficiency, precision and accuracy of all-electron variational
and diffusion quantum Monte Carlo calculations using Slater basis sets.
Starting from wave functions generated by Hartree-Fock and density functional
theory, we describe an algorithm to enforce the electron-nucleus cusp condition
by linear projection. For the 55 molecules in the G2 set, the diffusion quantum
Monte Carlo calculations recovers an average of 95% of the correlation energy
and reproduces bond energies to a mean absolute deviation of 3.2 kcal/mol.
Comparing the individual total energies with essentially exact values, we
investigate the error cancellation in atomization and chemical reaction path
energies, giving additional insight into the sizes of nodal surface errors.Comment: 7 pages, 7 figures, published by J. Chem. Phys (substantial changes
after first submission
Microscopic mechanism for the 1/8 magnetization plateau in SrCu_2(BO_3)_2
The frustrated quantum magnet SrCu_2(BO_3)_2 shows a remarkably rich phase
diagram in an external magnetic field including a sequence of magnetization
plateaux. The by far experimentally most studied and most prominent
magnetization plateau is the 1/8 plateau. Theoretically, one expects that this
material is well described by the Shastry-Sutherland model. But recent
microscopic calculations indicate that the 1/8 plateau is energetically not
favored. Here we report on a very simple microscopic mechanism which naturally
leads to a 1/8 plateau for realistic values of the magnetic exchange constants.
We show that the 1/8 plateau with a diamond unit cell benefits most compared to
other plateau structures from quantum fluctuations which to a large part are
induced by Dzyaloshinskii-Moriya interactions. Physically, such couplings
result in kinetic terms in an effective hardcore boson description leading to a
renormalization of the energy of the different plateaux structures which we
treat in this work on the mean-field level. The stability of the resulting
plateaux are discussed. Furthermore, our results indicate a series of stripe
structures above 1/8 and a stable magnetization plateau at 1/6. Most
qualitative aspects of our microscopic theory agree well with a recently
formulated phenomenological theory for the experimental data of SrCu_2(BO_3)_2.
Interestingly, our calculations point to a rather large ratio of the magnetic
couplings in the Shastry-Sutherland model such that non-perturbative effects
become essential for the understanding of the frustrated quantum magnet
SrCu_2(BO_3)_2.Comment: 24 pages, 24 figure
Hofstadter butterflies of bilayer graphene
We calculate the electronic spectrum of bilayer graphene in perpendicular
magnetic fields nonperturbatively. To accommodate arbitrary displacements
between the two layers, we apply a periodic gauge based on singular flux
vortices of phase . The resulting Hofstadter-like butterfly plots show a
reduced symmetry, depending on the relative position of the two layers against
each other. The split of the zero-energy relativistic Landau level differs by
one order of magnitude between Bernal and non-Bernal stacking.Comment: updated to refereed and edited versio
Spectroscopy of the globular clusters in M87
With a velocity dispersion of 370 + or - 50 km/sec the globular cluster system of M87 is kinematically hotter than the stars in the giant elliptical itself. This is consistent with the clusters' shallower density distribution for isotropic orbits. The mean metallicity of the 27 clusters in the sample analyzed here is no more than a factor of 2 more metal rich than the cluster system of the Milky Way, but considerably more metal poowr than the integrated starlight in the field at a radius of 1' from the center of M87. There is no evidence for the existence of young clusters in the system. The mass-radius relation between 1' and 5' required to contain the globular clusters joins on to that required to contain the hot gas around M87
Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design
We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools
Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy
We have discovered 20 dwarf Cepheids (DC) in the Carina dSph galaxy from the
analysis of individual CCD images obtained for a deep photometric study of the
system. These short-period pulsating variable stars are by far the most distant
(~100 kpc) and faintest (V ~ 23.0) DCs known. The Carina DCs obey a
well-defined period-luminosity relation, allowing us to readily distinguish
between overtone and fundamental pulsators in nearly every case. Unlike RR Lyr
stars, the pulsation mode turns out to be uncorrelated with light-curve shape,
nor do the overtone pulsators tend towards shorter periods compared to the
fundamental pulsators. Using the period-luminosity (PL) relations from Nemec et
al. (1994 AJ, 108, 222) and McNamara (1995, AJ, 109, 1751), we derive (m-M)_0 =
20.06 +/- 0.12, for E(B-V) = 0.025 and [Fe/H] = -2.0, in good agreement with
recent, independent estimates of the distance/reddening of Carina. The error
reflects the uncertainties in the DC distance scale, and in the metallicity and
reddening of Carina. The frequency of DCs among upper main sequence stars in
Carina is approximately 3%. The ratio of dwarf Cepheids to RR Lyr stars in
Carina is 0.13 +/- 0.10, though this result is highly sensitive to the
star-formation history of Carina and the evolution of the Horizontal Branch. We
discuss how DCs may be useful to search effectively for substructure in the
Galactic halo out to Galactocentric distances of ~100 kpc.Comment: 20 pages of text, 7 figure
Uncovering hidden modes in RR Lyrae stars
The Kepler space telescope revealed new, unexpected phenomena in RR Lyrae
stars: period doubling and the possible presence of additional modes.
Identifying these modes is complicated because they blend in the rich features
of the Fourier-spectrum. Our hydrodynamic calculations uncovered that a
'hidden' mode, the 9th overtone is involved in the period doubling phenomenon.
The period of the overtone changes by up to 10 per cent compared to the linear
value, indicating a very significant nonlinear period shift caused by its
resonance with the fundamental mode. The observations also revealed weak peaks
that may correspond to the first or second overtones. These additional modes
are often coupled with period doubling. We investigated the possibilities and
occurrences of mutual resonances between the fundamental mode and multiple
overtones in our models. These theoretical findings can help interpreting the
origin and nature of the 'hidden' modes may be found in the high quality light
curves of space observatories.Comment: In proceedings of "20th Stellar Pulsation Conference Series: Impact
of new instrumentation & new insights in stellar pulsations", 5-9 September
2011, Granada, Spai
- …
