14 research outputs found

    Exact solution for large amplitude flexural vibration of nanobeams using nonlocal Euler-Bernoulli theory

    Full text link
    In this paper, nonlinear free vibration of nanobeams with various end conditions is studied using the nonlocal elasticity within the frame work of Euler-Bernoulli theory with von K´arm´an nonlinearity. The equation of motion is obtained and the exact solution is established using elliptic integrals. Two comparison studies are carried out to demonstrate accuracy and applicability of the elliptic integrals method for nonlocal nonlinear free vibration analysis of nanobeams. It is observed that the phase plane diagrams of nanobeams in the presence of the small scale effect are symmetric ellipses, and consideration the small scale effect decreases the area of the diagram

    A high-order FEM formulation for free and forced vibration analysis of a nonlocal nonlinear graded Timoshenko nanobeam based on the weak form quadrature element method

    Get PDF
    The purpose of this paper is to provide a high-order finite element method (FEM) formulation of nonlocal nonlinear nonlocal graded Timoshenko based on the weak form quadrature element method (WQEM). This formulation offers the advantages and flexibility of the FEM without its limiting low-order accuracy. The nanobeam theory accounts for the von Kármán geometric nonlinearity in addition to Eringen’s nonlocal constitutive models. For the sake of generality, a nonlinear foundation is included in the formulation. The proposed formulation generates high-order derivative terms that cannot be accounted for using regular first- or second-order interpolation functions. Hamilton’s principle is used to derive the variational statement which is discretized using WQEM. The results of a WQEM free vibration study are assessed using data obtained from a similar problem solved by the differential quadrature method (DQM). The study shows that WQEM can offer the same accuracy as DQM with a reduced computational cost. Currently the literature describes a small number of high-order numerical forced vibration problems, the majority of which are limited to DQM. To obtain forced vibration solutions using WQEM, the authors propose two different methods to obtain frequency response curves. The obtained results indicate that the frequency response curves generated by either method closely match their DQM counterparts obtained from the literature, and this is despite the low mesh density used for the WQEM systems

    Exact solution for large amplitude flexural vibration of nanobeams using nonlocal Euler-Bernoulli theory

    No full text
    In this paper, nonlinear free vibration of nanobeams with various end conditions is studied using the nonlocal elasticity within the frame work of Euler-Bernoulli theory with von K´arm´an nonlinearity. The equation of motion is obtained and the exact solution is established using elliptic integrals. Two comparison studies are carried out to demonstrate accuracy and applicability of the elliptic integrals method for nonlocal nonlinear free vibration analysis of nanobeams. It is observed that the phase plane diagrams of nanobeams in the presence of the small scale effect are symmetric ellipses, and consideration the small scale effect decreases the area of the diagram
    corecore