10,335 research outputs found

    Resampling adaptive cloth simulations onto fixed-topology meshes

    Get PDF
    We describe a method for converting an adaptively remeshed simulation of cloth into an animated mesh with fixed topology. The topology of the mesh may be specified by the user or computed automatically. In the latter case, we present a method for computing the optimal output mesh, that is, a mesh with spatially varying resolution which is fine enough to resolve all the detail present in the animation. This technique allows adaptive simulations to be easily used in applications that expect fixed-topology animated meshes

    Determinants of net interest margin under regulatory requirements: an econometric study

    Get PDF
    Using data for the period 1995-96 to 1999-2000, this paper seeks to identify the factors influencing spreads of Scheduled Commercial Banks in India. Among the explanatory variables, we incorporate, in addition to the standard set of variables, regulatory requirement variables. Our analysis reveals that (i) size does not necessarily correlate with higher spread, and (ii) higher fee income enables banks to tolerate lower spreads. With regard to regulatory requirement variables, it is found that (i) capital plays an important role in affecting spreads of public sector banks, and (ii) non-performing assets is uniformly important across all bank groups in influencing spreads.Net interest margin; regulatory requirements; banking; India

    Duality Symmetries in N=2 Heterotic Superstring

    Get PDF
    We review the derivation and the basic properties of the perturbative prepotential in N=2 compactifications of the heterotic superstring. We discuss the structure of the perturbative monodromy group and the embedding of rigidly supersymmetric monodromies associated with enhanced gauge groups, at both perturbative and non-perturbative level.Comment: Based on talks presented at several conferences. 12 pages, LaTe

    Position-Based Multi-Agent Dynamics for Real-Time Crowd Simulation (MiG paper)

    Full text link
    Exploiting the efficiency and stability of Position-Based Dynamics (PBD), we introduce a novel crowd simulation method that runs at interactive rates for hundreds of thousands of agents. Our method enables the detailed modeling of per-agent behavior in a Lagrangian formulation. We model short-range and long-range collision avoidance to simulate both sparse and dense crowds. On the particles representing agents, we formulate a set of positional constraints that can be readily integrated into a standard PBD solver. We augment the tentative particle motions with planning velocities to determine the preferred velocities of agents, and project the positions onto the constraint manifold to eliminate colliding configurations. The local short-range interaction is represented with collision and frictional contact between agents, as in the discrete simulation of granular materials. We incorporate a cohesion model for modeling collective behaviors and propose a new constraint for dealing with potential future collisions. Our new method is suitable for use in interactive games.Comment: 9 page

    Production of exotic composite quarks at the LHC

    Full text link
    We consider the production at the LHC of exotic composite quarks of charge Q=+(5/3)eQ=+(5/3) e and Q=(4/3)eQ=-(4/3) e. Such states are predicted in composite models of higher isospin multiplets (IW=1I_W=1 or IW=3/2I_W=3/2). Given their exotic charges (such as 5/35/3), their decays proceed through the electroweak interactions. We compute decay widths and rates for resonant production of the exotic quarks at the LHC. Partly motivated by the recent observation of an excess by the CMS collaboration in the e̸pTjje\not p_T jj final state signature we focus on ppU+jW++jj+̸pTjj pp \to U^+ j \to W^+ + j\, j\, \to \ell^+\not p_T jj and then perform a fast simulation of the detector reconstruction based on DELPHES. We then scan the parameter space of the model (m=Λm_*=\Lambda) and study the statistical significance of the signal against the relevant standard model background (WjjWjj followed by leptonic decay of the WW gauge boson) providing the luminosity curves as function of mm_* for discovery at 3- and 5-σ\sigma level.Comment: 14 pages, 10 figure

    A Bilocal Field Theory in Four Dimensions

    Full text link
    A bilocal field theory having M\"{o}bius gauge invariance is proposed. In four dimensions there exists a zero momentum state of the first quantized model, which belongs to a non-trivial BRS cohomology class. A field theory lagrangian having a gauge invariance only in four dimensions is constructed.Comment: 13 pages, TEP-9R, LaTe

    Asymmetric Non-Abelian Orbifolds and Model Building

    Full text link
    The rules for the free fermionic string model construction are extended to include general non-abelian orbifold constructions that go beyond the real fermionic approach. This generalization is also applied to the asymmetric orbifold rules recently introduced. These non-abelian orbifold rules are quite easy to use. Examples are given to illustrate their applications.Comment: 30 pages, Revtex 3.

    The M Theory Five-Brane and the Heterotic String

    Get PDF
    Brane actions with chiral bosons present special challenges. Recent progress in the description of the two main examples -- the M theory five-brane and the heterotic string -- is described. Also, double dimensional reduction of the M theory five-brane on K3 is shown to give the heterotic string.Comment: 13 pages, latex, no figures; ICTP Conference Proceeding

    Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario

    Full text link
    We investigate the high-energy properties of matter theories coupled to quantum gravity. Specifically, we show that quantum gravity fluctuations generically induce matter self-interactions in a scalar theory. Our calculations apply within asymptotically safe quantum gravity, where our results indicate that the UV is dominated by an interacting fixed point, with non-vanishing gravitational as well as matter couplings. In particular, momentum-dependent scalar self-interactions are non-zero and induce a non-vanishing momentum-independent scalar potential. Furthermore we point out that terms of this type can have observable consequences in the context of scalar-field driven inflation, where they can induce potentially observable non-Gaussianities in the CMB.Comment: 15 + 8 pages, 8 figures, extended truncation, version to be published in PR
    corecore