130 research outputs found
Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) are key players in immune evasion, tumor progression and metastasis. MDSCs accumulate under various pathological states and fall into two functionally and phenotypically distinct subsets that have been identified in humans and mice: polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. As dogs are an excellent model for human tumor development and progression, we set out to identify PMN-MDSCs and M-MDSCs in clinical canine oncology patients. Canine hypodense MHC class II-CD5-CD21-CD11b+ cells can be subdivided into polymorphonuclear (CADO48A+CD14-) and monocytic (CADO48A-CD14+) MDSC subsets. The transcriptomic signatures of PMN-MDSCs and M-MDSCs are distinct, and moreover reveal a statistically significant similarity between canine and previously published human PMN-MDSC gene expression patterns. As in humans, peripheral blood frequencies of canine PMN-MDSCs and M-MDSCs are significantly higher in dogs with cancer compared to healthy control dogs (PMN-MDSCs: p < 0.001; M-MDSCs: p < 0.01). By leveraging the power of evolution, we also identified additional conserved genes in PMN-MDSCs of multiple species that may play a role in MDSC function. Our findings therefore validate the dog as a model for studying MDSCs in the context of cancer
Endoscopic laser lithotripsy for complicated bile duct stones: is cholangioscopic guidance necessary?
Theoretical analysis of transurethral laser-induced thermo-therapy for treatment of benign prostatic hyperplasia. Evaluation of a water-cooled applicator
Towards better health: achieving a step change in health research in Ireland.
Item does not contain fulltext5 p
Durability of Probes for Interstitial Laser Coagulation: Impact of Power Setting and Probe Design
Die transurethrale Laserapplikation zur Therapie der BPH — Ein Vergleich verschiedener Verfahren
Laser Therapy for Benign Prostate Hyperplasia
Various procedures operating with different laser systems and application techniques are available for laser treatment of benign prostate hyperplasia (BPH). They generate differing qualitative and quantitative effects in tissue such as coagulation, vaporisation or, respectively, ablation as well as incisions leading according to technique to a resection or enucleation. Since these procedures are considered as alternatives to transurethral resection of the prostate (TURP), the objective of laser therapy is not only to achieve, in comparison to TURP, an equivalent improvement of the symptoms and quality of life but also a maxinial urinary flow strength or, respectively, a reduction of obstruction to bladder emptying with lower accompanying morbidity and shorter hospitalisation. Most of the published case control and randomised studies on laser therapy for BPH show heterogeneous results both with regard to the improvement of subjective and objective urination parameters as well to complications. This is due, on the one hand, to the laser or its qualitative action and, on the other hand, to the operator and the resulting specific quantitative effect. The biophysical relationships between the laser parameters and the tissue effects are a topic of current discussion. The biological effect depends not only on the depth of penetration and the scattering but also on other parameters of the laser. For the generation of voluminous coagulation necrosis with a laser in the ca. 800 to 1100 nm wavelength region, a carbonisation of the surface must be avoided. For thermal vaporisation, for example, the Nd:YAG laser with contract-free application or contact tips as well as diode lasers of varying wavelengths are suitable. Especially suitable are the potassium titanyl phosphate (KTP) laser and the lithium triboride (LBO) laser. Ablation is also possible with the Ho:YAG laser. An incision and thus resection or enucleation is also possible with various laser systems including thermal ones, but is more effective with a continuous beam laser of ca. 2000 nm. The Ho:YAG laser achieves an athermal incision the quality of which depends on the Pulse energy and the time behaviour of the laser impulse
- …
