11,067 research outputs found

    Kibble-Zurek Scaling in Holographic Quantum Quench : Backreaction

    Get PDF
    We study gauge and gravity backreaction in a holographic model of quantum quench across a superfluid critical transition. The model involves a complex scalar field coupled to a gauge and gravity field in the bulk. In earlier work (arXiv:1211.1776) the scalar field had a strong self-coupling, in which case the backreaction on both the metric and the gauge field can be ignored. In this approximation, it was shown that when a time dependent source for the order parameter drives the system across the critical point at a rate slow compared to the initial gap, the dynamics in the critical region is dominated by a zero mode of the bulk scalar, leading to a Kibble-Zurek type scaling function. We show that this mechanism for emergence of scaling behavior continues to hold without any self-coupling in the presence of backreaction of gauge field and gravity. Even though there are no zero modes for the metric and the gauge field, the scalar dynamics induces adiabaticity breakdown leading to scaling. This yields scaling behavior for the time dependence of the charge density and energy momentum tensor.Comment: 25 pages; v2 minor corrections; v3 minor corrections, to appear in JHE

    Optimum design of magnetic field environment for axonal growth control in nerve cell regeneration process using electromagnetic field analyses

    Get PDF
    In this study, an optimum magnetic field environment for the nerve axonal extension and control of axonal growth direction in the nerve cell generation process was searched by using electromagnetic finite element analyses. Recently, the developments of 3D-scaffold structures employing biodegradable polymers have been an attracting attention for the clinical treatments of damaged nerve tissues. The magnetic stimulation is introduced to accelerate the regeneration speed of nerve axon inside the 3D-scaffold. According to experimental observation of Blackman, C.F. and his research group (1993) [1], it was found that 50 Hz AC magnetic field has promoted the regeneration of axonal extension in the case of pheochromocytoma cells (PC12). They identified the optimum configuration of the coil and the threshold value of driving current for the initiation of PC12 axon growth. However, they did not evaluate analytically the magnetic flux density and the magnetic field in the cell culture liquid for the PC12 axon growth initiation. Therefore, at first we employed the electromagnetic finite element analyses (FEA) to evaluate the magnetic flux density in the case of Blackman’s experiment. Simultaneously, we identified the relative magnetic permeability of Dulbecco’s Modified Eagle Medium (DMEM) as 1.01 at 50 Hz. Finally, we obtained the value of magnetic flux density inside DMEM as 4.2 T. Next, we try to design the configuration of Helmholtz coil, which can generate an optimum magnetic field to stimulate most effectively for PC12 axon extension. It is confirmed that the magnetic field gradient affect the extensional speed of PC12 axon, which can be achieved by setup the one peripheral coil and two coils at the center. We found an optimum configuration of Helmholtz coil to generate the magnetic field environment and fabricate an experimental bioreactor for PC12 cell culture. We examined the effectiveness of magnetic stimulation for PC12 nerve axon’s extension quantitatively. Further, we try to find the relationship between the magnetic field gradient and the direction of nerve axon’s extension

    Graphite/Larc-160 technology demonstration segment test results

    Get PDF
    A structural test program was conducted on a Celion/LARC-160 graphite/polyimide technology demonstration segment (TDS) to verify the technology. The 137 x 152 cm (54 x 60 in.) TDS simulates a full-scale section of the orbiter composite body flap design incorporating three ribs and extending from the forward cove back to the rear spar. The TDS was successfully subjected to mechanical loads and thermal environments (-170 to 316 C) simulating 100 shuttle orbiter missions. Successful completion of the test program verified the design, analysis, and fabrication methodology for bonded Gr/PI honeycomb sandwich structure and demonstration that Gr/PI composite technology readiness is established

    Quaternionic Electroweak Theory

    Full text link
    We explicitly develop a quaternionic version of the electroweak theory, based on the local gauge group U(1,q)LU(1,c)YU(1, q)_{L}\mid U(1, c)_{Y}. The need of a complex projection for our Lagrangian and the physical significance of the anomalous scalar solutions are also discussed.Comment: 12 pages, Revtex, submitted to J. Phys.

    A density functional theory for general hard-core lattice gases

    Full text link
    We put forward a general procedure to obtain an approximate free energy density functional for any hard-core lattice gas, regardless of the shape of the particles, the underlying lattice or the dimension of the system. The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems. Also, the obtained density functionals belong to the class of fundamental measure functionals and, therefore, are always consistent through dimensional reduction. We discuss possible extensions of this method to account for attractive lattice models.Comment: 4 pages, 1 eps figure, uses RevTeX

    BRST invariant Lagrangian of spontaneously broken gauge theories in noncommutative geometry

    Get PDF
    The quantization of spontaneously broken gauge theories in noncommutative geometry(NCG) has been sought for some time, because quantization is crucial for making the NCG approach a reliable and physically acceptable theory. Lee, Hwang and Ne'eman recently succeeded in realizing the BRST quantization of gauge theories in NCG in the matrix derivative approach proposed by Coquereaux et al. The present author has proposed a characteristic formulation to reconstruct a gauge theory in NCG on the discrete space M4×ZNM_4\times Z_{_N}. Since this formulation is a generalization of the differential geometry on the ordinary manifold to that on the discrete manifold, it is more familiar than other approaches. In this paper, we show that within our formulation we can obtain the BRST invariant Lagrangian in the same way as Lee, Hwang and Ne'eman and apply it to the SU(2)×\timesU(1) gauge theory.Comment: RevTeX, page

    ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer

    Full text link
    Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest mm/submm interferometer, and currently the Early Science is ongoing, together with the commissioning and science verification (CSV). Here we present a study of the temporal phase stability of the entire ALMA system from antennas to the correlator. We verified the temporal phase stability of ALMA using data, taken during the last two years of CSV activities. The data consist of integrations on strong point sources (i.e., bright quasars) at various frequency bands, and at various baseline lengths (up to 600 m). From the observations of strong quasars for a long time (from a few tens of minutes, up to an hour), we derived the 2-point Allan Standard Deviation after the atmospheric phase correction using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna, and confirmed that the phase stability of all the baselines reached the ALMA specification. Since we applied the WVR phase correction to all the data mentioned above, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions. The phase stability often improves a factor of 2 - 3 after the correction, and sometimes a factor of 7 improvement can be obtained. However, the corrected data still displays an increasing phase fluctuation as a function of baseline length, suggesting that the dry component (e.g., N2 and O2) in the atmosphere also contributes the phase fluctuation in the data, although the imperfection of the WVR phase correction cannot be ruled out at this moment.Comment: Proc. SPIE 8444-125, in press (7 pages, 4 figures, 1 table

    Lepton Scattering off Few-Nucleon Systems at Medium and High Energies

    Full text link
    The interpretation of recent Jlab experimental data on the exclusive process A(e,e'p)B off few-nucleon systems are analyzed in terms of realistic nuclear wave functions and Glauber multiple scattering theory, both in its original form and within a generalized eikonal approximation. The relevance of the exclusive process 4He(e,e'p)^3H for possible investigations of QCD effects is illustrated.Comment: 6 pages, 3 figures. Plenary talk given by C. Ciofi degli Atti at the XX European Conference "Few Body Problems in Physics", Pisa, Italy, September 2007. To appear in Few-Body System
    corecore