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coupled to a gauge and gravity field in the bulk. In earlier work (arXiv:1211.7076) the
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and the gauge field can be ignored. In this approximation, it was shown that when a time

dependent source for the order parameter drives the system across the critical point at a

rate slow compared to the initial gap, the dynamics in the critical region is dominated by

a zero mode of the bulk scalar, leading to a Kibble-Zurek type scaling function. We show

that this mechanism for emergence of scaling behavior continues to hold without any self-

coupling in the presence of backreaction of gauge field and gravity. Even though there are

no zero modes for the metric and the gauge field, the scalar dynamics induces adiabaticity

breakdown leading to scaling. This yields scaling behavior for the time dependence of the

charge density and energy momentum tensor.
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1 Introduction and summary

Quantum (or thermal) quench across critical points is an interesting problem in many

areas of physics. Consider starting in the gapped phase of a system and turning on a time

dependent external parameter which drives it to a critical point at a rate slow compared

to the initial gap. While the initial time evolution will be adiabatic, adiabaticity will break

down close to the critical point and the subsequent time evolution is expected to carry

universal signatures of the critical point. Many years ago, Kibble [1], and subsequently

Zurek [2], argued that observables like defect density indeed show scaling behavior. These

arguments — which were first developed for thermal quench and recently generalized to

quantum quench1 [7] — imply that for a driving involving a single relevant operator, the

time dependence of the one point function of an operator O with conformal dimension x

is of the form [4]

O(t, v) ∼ v
xν

zν+1F (tv
zν

zν+1 ) (1.1)

where v is the rate of change of the coupling, ν is the correlation length exponent and z is the

dynamical critical exponent. The arguments which lead to (1.1) involve (i) an assumption

that once adiabaticity breaks the system evolve in a diabatic fashion and (ii) in the critical

region the instantaneous correlation length is the only length scale in the problem. The first

assumption is rather drastic. The second assumption is reasonable, but unlike equilibrium

1For example see the following reviews [3–6].
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critical behavior there is really no well understood conceptual framework like the renormal-

ization group which explains why all other scales decouple from the problem. This is partic-

ularly so for strongly coupled systems. Nevertheless, Kibble-Zurek scaling has been verified

by explicit calculations in many models and is now being seen experimentally as well [3–6].2

In [15] a study of this problem in strongly coupled field theories which have gravity

duals via AdS/CFT was initiated and continued in [16] and [17]. The idea is to use

holographic techniques to investigate scaling behavior for slow quench without making any

of the above assumptions. In the AdS/CFT correspondence a time dependent coupling

of a strongly coupled boundary field theory corresponds to a time dependent boundary

condition for the bulk dual field, so that the problem reduces to differential equations with

time dependent boundary conditions. A mechanism for emergence of scaling emerges in

these studies. These models involve bulk scalar fields which are dual to order parameters

and the critical point is characterized by a zero mode of the scalar, i.e. a solution of the

linearized equations of motion which satisfy zero source boundary conditions at the AdS

boundary and regularity in the interior. It turns out that in the critical region where

adiabaticity is broken (so that a Taylor expansion in v breaks down) , there is a new small-

v expansion in fractional powers of v. To leading order in this expansion, the dynamics is

dominated by the zero mode, and the resulting bulk equations of the zero mode lead to a

scaling solution. The analysis can be also used to determine the corrections to scaling.

These studies did not include the effect of fluctuations (i.e. 1/N corrections in the

boundary field theory). More recently [18, 19] have studied the problem by modelling these

fluctuations with a noise in the time evolution in a manner consistent with the fluctuation-

dissipation theorem and found consistency with the Kibble Zurek mechanism. Other as-

pects of quantum quench which involve critical points have been investigated in [20–30].

The models considered in [15] and [16] have scalar fields in the bulk with strong self-

couplings, together with gravity and a Maxwell field. The strong self-coupling allows a

probe approximation in which the backreaction of both the gravity and the bulk gauge

field can be ignored, as in [31]. It is important to examine the effects of backreaction.

First, as we will see below, the zero mode is present only in the scalar sector — not for

the gauge field or the metric perturbations. It is therefore of interest to know whether the

critical dynamics of the gauge field and metric also simplifies and lead to scaling properties

of the charge density and energy-momentum tensor in the boundary theory. Perhaps more

importantly, it is interesting to know whether the system thermalizes in any sense at late

times. This requires a complete treatment of the dynamics of the bulk metric. For a slow

driving far away from any critical point, the evolution is essentially adiabatic. If we start

from the ground state, as in the zero temperature cases of [16] and [17], this means that

there is no collapse into a black hole. If the quench crosses a critical point, the system gets

excited and it would be interesting to know what happens in the bulk.

In this paper, we take the first step in incorporating backreaction by addressing the

first question above. We will find that even though there is no zero mode in the gauge

and gravity sectors, the scalar zero mode feeds in through nonlinearities and leads to a

2For experiments see e.g. [8–14].
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breakdown of adiabatic evolution of the gauge and gravity fields. In the critical region

there is again an expansion in fractional powers of v. The scalar dynamics is dominated

by the zero mode and the nonlinear coupling with the gauge field and the metric leads to

scaling solutions for all the fields. The AdS/CFT dictionary then yields scaling functions for

the expectation value of the order parameter, the charge density and the energy momentum

tensor. We will not address the question of late time behavior and thermalization: this

would require detailed numerical work which we postpone to a later investigation.

For this purpose, we consider the holographic superfluid model of [32], subsequently

studied by [33]. The model considered in [16] is a variation of this model: the scalar

has a self-coupling in addition to minimal coupling to the gauge field and the metric.

One of the boundary space directions is compact with some radius R. Quantum quench

is performed by introducing a time dependent boundary condition which corresponds to

a time dependent source for the order parameter in the boundary field theory. In [16]

non-linearity arose from self coupling of the scalar. In this paper, however, we set the

self-coupling to zero — as in the work of [32].

Now the backreaction of the gauge field cannot be ignored. However, when the charge

of the field is large, there is a probe approximation where the backreaction of gravity can be

ignored (which was used in [32]). We first consider this probe approximation. We determine

the equilibrium exponents, and then proceed to examine the breakdown of the adiabatic ex-

pansion. We show that the zero mode of the scalar field leads to a breakdown of adiabaticity

in both the scalar and the gauge sector. The time of breakdown is the same for both the

fields — this serves as a consistency check on the calculation. We then examine the dynam-

ics in the critical region closely following [15]–[17]. In a way analogous to these works we find

that there is a consistent small-v expansion in fractional powers of v. To leading order of this

expansion, the zero mode of the scalar dominates the dynamics. While there is no zero mode

for the gauge field, the equations of motion determine the dependence of the gauge field in

the AdS radial direction in terms of the scalar zero mode, which leads again to decoupling of

modes. The resulting leading order dynamics then exhibits scaling behavior like (1.1), and

the expansion in fractional powers of v provides a way to calculate the corrections to scaling.

We then proceed beyond the probe approximation and consider the backreaction of

the metric and show the breakdown of adiabaticity, the existence of a small-v expansion in

fractional powers of v and the emergence of scaling solutions are quite similar to the gauge

field case.

In section 2 we describe the basic setup. Section 3 deals with the quench dynamics in

the probe approximation. In section 4 we incorporate the backreaction of gravity. Section 5

contains conclusions and discussions.

2 The basic setup

The bulk action in d+ 2 dimensions is given by

S=

∫

dd+2x
√
g

[

1

2κ2

(

R+
d(d+ 1)

L2

)

− 1

4
FµνF

µν −
(

|∂µΦ− iqAµΦ|2 −m2|Φ|2
)

]

, (2.1)

– 3 –
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where Φ is a complex scalar field with charge q and Aµ is an abelian gauge field, and

the other notations are standard. Henceforth we will use L = 1 units. One of the spatial

directions, which we will denote by θ will be considered to be compact. The radial direction

will be denoted by r. The mass of the scalar is chosen in the range

m2
BF < m2 < m2

BF + 1, (2.2)

where m2
BF = −(d+ 1)2/2 is the Breitenholer-Freedman bound.

The boundary theory has a finite chemical potential µ, so that

Limr→∞(At) → µ. (2.3)

The temperature vanishes.

Let us first set Φ = 0 (which is always a solution). As shown in [32], there is a value

of the chemical potential µ = µ0 such that for µ < µ0 the preferred solution to Einstein

equation is an AdS soliton

ds2 =
dr2

r2h(r)
+ r2

(

−dt2 +
d−1
∑

i=1

dx2i

)

+ r2h(r)dθ2 , (2.4)

h(r) = 1−
(r0
r

)d+1
, (2.5)

At = µ , (2.6)

with constant parameters µ and r0. The periodicity of θ in this solution is

θ ∼ θ +
4π

(d+ 1)r0
, (2.7)

µ0 is given by

µ0 =
r0(d+ 1)(2d)

d−1
2(d+1)

(d− 1)
d

d+1 (d+ 1)1/2
. (2.8)

For µ > µ0 the preferred background is an extremal black brane. We will consider the

soliton phase.

In the remainder of the paper we will rescale all distances to set r0 = 1.

3 The probe approximation

We now consider the effect of the scalar field. In this section we consider the regime

q2 ≫ κ2, (3.1)

so that the gravity background can be considered to be fixed. (Hereafter we fix q =

1.) Gravity backreaction is treated in the next section. Thus the spacetime background

remains an AdS soliton. Note that this probe approximation is not the same as the probe

approximation of [16]. In the latter paper there was a strong coupling of the scalar which

– 4 –
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allowed a different probe approximation where the backreaction of both the gravity and

the gauge field can be ignored.

We will consider configurations which are functions of t and r only, and work in a

gauge Ar = 0. Translation invariance then implies that we can choose Ai = 0 where i

denotes the boundary spatial directions, which is consistent with the spatial components

of the Maxwell equations. Then the only non-vanishing gauge field component is At which

we denote simply by φ(t, r). The coupled scalar-Maxwell equations then become

− 1

r2

(

Φ̈R + φ̇ΦI + 2φΦ̇I − φ2ΦR

)

+
1

rd
∂r

(

rd+2h∂rΦR

)

−m2ΦR = 0, (3.2)

− 1

r2

(

Φ̈I − φ̇ΦR − 2φΦ̇R − φ2ΦI

)

+
1

rd
∂r

(

rd+2h∂rΦI

)

−m2ΦI = 0, (3.3)

φ̇′ = 2r2
(

ΦIΦ
′

R − Φ′

IΦR

)

, (3.4)

1

rd
∂r

(

rdh∂rφ
)

=
2

r2

(

ΦIΦ̇R − Φ̇IΦR + φ|Φ|2
)

. (3.5)

Here · and ′ are t and r derivative respectively and the complex scalar field is written in

terms of its real and imaginary parts

Φ = ΦR + iΦI . (3.6)

Near the AdS boundary r → ∞, these fields satisfy the asymptotic conditions

Φ → J(t)r−∆− [1 + · · · ] + χ(t)r−∆+ [1 + · · · ] , (3.7)

φ → µ [1 + · · · ]− ρ(t)r1−d [1 + · · · ] , (3.8)

where

∆± =
d+ 1

2
±
√

m2 +
(d+ 1)2

4
. (3.9)

Near the tip of the soliton r = 1, we write r = 1 + x with x ≪ 1 and the equations of

motion become

−
(

Φ̈R + φ̇ΦI + 2φΦ̇I − φ2ΦR

)

− (d+ 1)∂x (x∂xΦR)−m2ΦR = 0 (3.10)

−
(

Φ̈I − φ̇ΦR − 2φΦ̇R − φ2ΦI

)

− (d+ 1)∂x (x∂xΦI)−m2ΦI = 0 (3.11)

φ̇′ = 2
(

ΦIΦ
′

R − Φ′

IΦR

)

(3.12)

−(d+ 1)∂x (x∂xφ) = 2
(

ΦIΦ̇R − Φ̇IΦR + φ|Φ|2
)

(3.13)

Thus the fields behave as

ΦR,I → c
(R,I)
1 (t) + c

(R,I)
2 (t) log x (3.14)

φ → d1(t) + d2(t) log x (3.15)

Thus regularity at the tip requires c
(R,I)
2 (t) = d2(t) = 0.

Among these equations, the equation (3.4) is a constraint equation associated with

our gauge choice. Once this equation is imposed on some constant r slice, the other three

– 5 –
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equations guarantee that it holds everywhere. Let us therefore impose this at a large

r = R0 slice. Using the asymptotic conditions (3.8), The left hand side of (3.4) becomes

φ̇′ → −(1− d)ρ̇(t)r−d [1 + · · · ] . (3.16)

On the right hand side, the power of r of each term is not r−d. However there are cancel-

lations,

2r2
(

ΦIΦ
′

R − Φ′

IΦR

)

→ 2r2
(

JIr
−∆− + χIr

−∆+
) (

−∆−JRr
−∆−−1 −∆+χRr

−∆+−1
)

− 2r2
(

−∆−JIr
−∆−−1 −∆+χIr

−∆+−1
) (

JRr
−∆− + χRr

−∆+
)

= 2r−(∆++∆−)+1 (∆+ −∆−) (JRχI − JIχR) . (3.17)

Here J = JR + iJI and χ = χR + iχI . Since ∆+ + ∆− = d + 1, the power of r is indeed

r−d and we get

ρ̇(t) =
2 (∆+ −∆−)

d− 1
(JRχI − JIχR) . (3.18)

This may be finally re-written as

∂tρ =
2(∆+ −∆−)

d− 1
Im [J⋆(t)χ(t)] . (3.19)

3.1 The equilibrium critical point and its exponents

The AdS soliton with constant φ = µ is not the energetically preferred solution for large

enough µ. As found in [32], there is a critical value of µ = µc < µ0 below which the scalar

field condenses. For d = 3 and m2 = −15/4, the value of µc ∼ 1.89/q, so that for large

enough q this is smaller than µ0 when the background is AdS soliton.

The point µ = µc is a critical point with diverging correlation length. An important

property of this point is that there is a scalar zero mode, i.e. a solution of the linearized

equations of motion for the scalar which satisfies the vanishing source boundary condition

at the AdS boundary, and in addition regular in the interior. For specific values of m2, the

existence of the zero mode was proved in [16]. For generic m2 in this mass range, this has

been found numerically. This zero mode will play a key role in the following.

The existence of this zero mode allows a calculation of the equilibrium critical ex-

ponents. In the following we will be interested in a quantum quench driven by a time

dependent boundary value of the scalar field J(t) with µ tuned to be exactly equal to µc.

We therefore need to know the equilibrium exponents at µ = µc. For static configurations

the equations of motion (3.2)–(3.5) become

DΦR +
1

r4h
(φ2 − µ2)ΦR = 0, (3.20)

DΦI +
1

r4h
(φ2 − µ2)ΦI = 0, (3.21)

0 = 2r2
(

ΦIΦ
′

R − Φ′

IΦR

)

, (3.22)

1

rd
∂r

(

rdh∂rφ
)

=
2

r2
φ|Φ|2. (3.23)

– 6 –
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where the operator D is given by

D ≡ ∂2
r +

(

d+ 2

r
+

h′

h

)

∂r −
1

r2h

(

m2 − µ2

r2

)

. (3.24)

Consider a time independent boundary condition given by J with µ = µc. By a r indepen-

dent gauge transformation we can choose the static field Φ to be real — this satisfies the

constraint equation (3.22) for time independent configurations. To calculate the response

to such a static source in the critical region |J | ≪ 1 let us expand the fields as

ΦR = Jf(r) + Jγχ(r), φ = µ+ Jβα(r), (3.25)

where f(r) = r−∆−(1 + · · · ), χ(r) ∼ r−∆+ and α(r) ∼ r−(d−1) for large r. The functions

χ(r) and α(r) have an expansion in powers of J and we will seek a solution which starts at

O(J0). We will assume that γ ≤ 1. The self-consistency of this assumption will be verified

below. Substituting (3.25) in equations (3.20) and (3.23) we get

JD(f) + JγD(χ) +
1

r4h
(2µJβα+ J2βα2)(Jf + Jγχ) = 0, (3.26)

Jβ 1

rd
∂r

(

rdh∂rα
)

=
2

r2
(Jf + Jγχ)2(µ+ Jβα). (3.27)

For small J , it is straightforward to see that when Dχ 6= 0 there are O(J0) solutions to

these equations only when γ = 1 and β = 2. However for µ = µc there is a zero mode,

i.e. a solution to Dχ = 0. In this case the only possibility is γ < 1 and the equations then

determine

β = 2/3, γ = 1/3. (3.28)

Since the term Jβa is the expectation value of the charge density and the term Jγχ is the

expectation value of the order parameter in the boundary theory, we get

〈O〉 ∼ J1/3, 〈ρ〉 ∼ J2/3. (3.29)

We therefore get the mean field exponents appropriate to a Φ4 landau-Ginsburg theory.

3.2 The adiabatic expansion and its breakdown

We want to study the response of the system at µ = µc in the presence of a time dependent

boundary condition J(t) (see equation (3.7) for the bulk scalar). This is dual to a time

dependent source for the order parameter in the boundary theory. The function J(t)

is chosen to asymptote to a constant value at early and late times, and slowly varying

compared to the initial gap, which has been set to unity by the choice r0 = 1. J(t) crosses

zero at some intermediate time. An example is

J(t) = J0 tanh(vt), v ≪ 1. (3.30)

Let us consider starting the system at an early time where J(t) ∼ −J0. For early enough

times, the time evolution will be adiabatic. However, as t → 0, the system approaches a

– 7 –
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critical point with a vanishing (instantaneous) gap, leading to a breakdown of adiabaticity.

In this subsection we will determine the time scale at which this happens.

An adiabatic solution to the equations of motion (3.2)–(3.5) has the form

ΦR = Φ
(0)
R (r, t) + ǫΦ

(1)
R (r, t) + ǫ2Φ

(2)
R (r, t) + · · · ,

ΦI = Φ
(0)
I (r, t) + ǫΦ

(1)
I (r, t) + ǫ2Φ

(2)
I (r, t) + · · · ,

φ = φ(0)(r, t) + ǫα(1)(r, t) + ǫ2α(2)(r, t) · · · , (3.31)

where ǫ is the adiabaticity parameter which counts the number of time derivatives, and

the functions Φ
(0)
R ,Φ

(0)
I , φ(0) are the static solutions discussed in the previous section, but

with the constant source J replaced by J(t),

Φ
(0)
R (t, r) = J(t)f0(r) + J(t)1/3χ(0)(r), Φ

(0)
I = 0, (3.32)

φ(0)(t, r) = µ+ J(t)2/3α(0)(r). (3.33)

The functions appearing above have the following asymptotic behavior at r → ∞

f0(r) ∼ r−∆− , χ(0)(r) ∼ r−∆+ , α(0)(r) ∼ r1−d. (3.34)

We now substitute (3.31) into the equations of motion (3.2)–(3.5), replace ∂t → ǫ∂t and

equate terms with the same power of ǫ. The O(ǫ) equations become

D(Φ
(1)
R ) +

1

r4h

(

2J2/3µα(0)Φ
(1)
R + 2J1/3µα(1)χ(0)

)

= 0, (3.35)

D(Φ
(1)
I )− 1

r4h

(

−2J2/3µα(0)Φ
(1)
I

)

= − 2

3r4h
µJ−2/3J̇χ(0), (3.36)

2

3
J−1/3J̇∂rα

(0) = 2r2
(

Φ
(1)
I Φ

′(0)
R − Φ

′(1)
I Φ

(0)
R

)

, (3.37)

1

rd
∂r

(

rdh∂rα
(1)

)

=
2

r2

(

2µJ1/3χ(0)Φ
(1)
R + α(1)J2/3

(

χ(0)
)2

)

. (3.38)

In the above equations we have retained the leading order terms for small J since this is the

regime where we expect adiabaticity to break down. The equations (3.35) and (3.38) are

homogeneous coupled equations for Φ
(1)
R and α(1). With the specified boundary conditions

their solutions are trivial

Φ
(1)
R = α(1) = 0, (3.39)

at the lowest order of the small J expansion.

On the other hand, the equation (3.36) has a source which is the time derivative of

the zeroth order solution. Since the background has µ = µc, the operator D has a zero

mode. If J is vanishing, the solution to this equation is therefore divergent, signifying a

breakdown of adiabaticity. For small J , we can use perturbation theory to estimate Φ
(1)
I .

To do this it is convenient to decompose the field Φ
(1)
I (r, t) in terms of the orthonormal

eigenfunctions of the operator D:

Φ
(1)
I (r, t) =

∑

n

Φ
(1)
I,n(t)ϕn(r), Dϕn(r) = λnϕn(r), (λ0 = 0, λn > 0 (n ≥ 1)) (3.40)
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The equation (3.36) can be then expressed in the form

λnΦ
(1)
I,n(t) + J2/3Ãm

n Φ
(1)
I,m(t) = J−2/3J̇B̃n (3.41)

where we have defined

Ãm
n = 2µ

∫

drϕ⋆
n(r)

1

r4h
α(0)ϕm(r) B̃n = −µ

∫

dr
2

3r4h
χ(0)(r) (3.42)

It is clear from (3.41) that for small J(t) while the contribution from the nonzero modes be-

gin with J−2/3J̇ the zero mode contribution is proportional to J−4/3J̇ . Thus the dominant

adiabatic correction is given by

Φ
(1)
I ∼ J−4/3J̇ . (3.43)

The adiabatic expansion then breaks down when Φ
(1)
I is of the same order as Φ

(0)
R , i.e. when

J̇ ∼ J5/3. (3.44)

For a generic protocol with J(t) ∼ vt for small t, this means that the Kibble-Zurek time is

t⋆ ∼ v−2/5, (3.45)

while the order parameter at this time is

〈O〉 ∼ v1/5. (3.46)

We need to make sure that the equation (3.37) is consistent with the small J behav-

ior above. Naively the J dependence of Φ
(1)
I is not consistent with (3.37). However, as

mentioned earlier this equation is a constraint equation and it is sufficient to check this at

large r, i.e. check the equation (3.19). Using the results ImJ = 0 and

ρ ∼ J2/3, Imχ ∼ J−4/3J̇ , ReJ ∼ J, (3.47)

it is clear that both sides of this equation behave as J−1/3J̇ . This agreement reflects

the fact that there are cancellations in the right hand side of (3.37) as is explicit in the

derivation of (3.19).

We therefore see that to lowest order in the adiabatic expansion, the gauge field does

not receive any correction. To investigate any breakdown of adiabaticity in the gauge

sector, we need to proceed to the next order in the adiabatic expansion. To O(ǫ2) the

equation of motion (3.5) leads to

1

rd
∂r(r

dh∂rα
(2)) =

2

r2

[

Φ
(1)
I ∂tΦ

(0)
R − Φ

(0)
R ∂tΦ

(0)
I + α(0)(Φ

(1)
I )2

]

+
2

r2

[

α(2)(Φ
(0)
R )2 + 2α(0)Φ

(0)
R Φ

(2)
R

]

, (3.48)

where we have used Φ
(1)
R = Φ

(0)
I = 0. For small J we have Φ

(1)
I ∼ J−4/3J̇ and Φ

(0)
R ∼ J1/3.

The equation becomes

1

rd
∂r(r

dh∂rα
(2)) = K1(r)J

−1J̈ +K2(r)J
−2J̇2 + µK3(r)J

−8/3J̇2
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+ J2/3L1(r)α
(2) + µJ1/3L2(r)Φ

(2)
R , (3.49)

where Ki(r), Li(r) are functions of r. Unlike the case of the scalar, the operator on the

left hand side does not have a zero mode. Therefore we can ignore the terms which have

positive powers of J . The equation then becomes a linear differential equation for α(2) with

a source which arises from the first order corrections. These sources clearly diverge in the

J → 0 limit, so that there are large corrections to the gauge field as J approaches zero,

and α(2) scales as

α(2) ∼ J−8/3J̇2. (3.50)

Thus α(2) ∼ J2/3 ∼ v2/5(∼ J2/3α(0)) at the Kibble-Zurek time (3.45) and the adiabaticity

of the charge density ρ is broken. This means that the breakdown of adiabaticity in the

scalar sector feeds into the gauge sector.

3.3 Scaling in the critical region

Once adiabaticity breaks down, there is no Taylor series expansion in v as in (3.31). We

now show that there is now a different small-v expansion, in powers of v2/5. To see this, it

is convenient to rescale the time

t → η = v2/5t, (3.51)

and separate out the source part of the fields as follows

ΦR = J(ηv−2/5)r−∆− + v1/5χR(η, r), (3.52)

ΦI = v1/5χI(η, r), (3.53)

φ = µ+ v2/5α(η, r). (3.54)

For large r both χR, χI ∼ r−∆+ and α → r−d−1.

Near t = 0 we replace

J(t) → J0(vt) = J0v
3/5η. (3.55)

The equations of motion (3.2)–(3.5) can be now expanded in powers of v and become

v1/5D(χR) + v3/5
[

− 1

r4h
(2µ∂ηχI − 2µαχR) + J0ηD(r−∆−)

]

+O(v) = 0, (3.56)

v1/5D(χI) + v3/5
[

− 1

r4h
(−2µ∂ηχR − 2µαχI)

]

+O(v) = 0, (3.57)

v4/5α̇′ = 2r2J0ηv
4/5

[

χI∂r(r
−∆−)− (∂rχI)r

−∆
]

+ 2r2v2/5(χI∂rχR − χR∂rχI), (3.58)

v2/5
[

1

rd
∂r

(

rdh∂rα
)

− 2

r2
µ
(

χ2
R + χ2

I

)

]

+O(v4/5) = 0. (3.59)

Here · denotes η derivative. As mentioned earlier, the equation (3.58) is a constraint

equation which needs to be imposed at some r, the other equations then guarantee that it

holds for all r. It is straightforward to check that the v2/5 term in (3.58) vanishes for large r.

To solve these equations, we first consider equation (3.59). Since the operator D1 ≡
1
rd
∂r

(

rdh∂r
)

does not have a zero mode, (3.59) can be solved by obtaining the relevant
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Green’s function

α = D−1
1

[

2

r2
µ
(

χ2
R + χ2

I

)

]

. (3.60)

We next consider the equations of motion for scalars (3.56) and (3.57). Since we are

working at µ = µc, the operator D has a zero mode. It is clear that the zero mode

dominates the scalar dynamics for small v. More precisely, consider expanding the fields

in the basis formed by the eigenvectors of D which we employed in (3.40),

Dϕn(r) = λnϕn(r), (λ0 = 0, λn > 0 (n ≥ 1)). (3.61)

Hence,

χR(η, r) =
∑

n

χR,n(η)ϕn(r), (3.62)

χI(η, r) =
∑

n

χI,n(η)ϕn(r), (3.63)

α(η, r) =
∑

n

αn(η)ϕn(r). (3.64)

Then e.g. the equations (3.56) and (3.57) may be written as infinite sets of ordinary differ-

ential equations

λpχR,p = v2/5
[

2µAn
p (∂ηχI,n)− 2µBmn

p αmχR,n − J0ηJp

]

+O(v4/5), (3.65)

λpχI,p = v2/5
[

−2µAn
p (∂ηχR,n)− 2µBmn

p αmχI,n

]

+O(v4/5), (3.66)

where

An
p =

∫

[dr]
1

r4h
ϕ⋆
p(r)ϕn(r), (3.67)

Bmn
p =

∫

[dr]
1

r4h
ϕ⋆
p(r)ϕm(r)ϕn(r), (3.68)

Jp =

∫

[dr](Dr−∆−)ϕ⋆
p(r), (3.69)

and [dr] denotes the measure with which the eigenfunctions are orthonormal.

Clearly these equations have solutions which have an expansion in powers of v2/5. The

zero mode χR,0 has a O(1) contribution, while the dominant contribution to the non-zero

modes is O(v2/5). The small-v dynamics is therefore given the following set of equations

−2µA0
0(∂ηχI,0) + 2µB0m

0 α0
mχR,0 + J0ηJ0 = 0, (3.70)

2µA0
0(∂ηχR,0) + 2µB0m

0 α0
mχI,0 = 0, (3.71)

while {α0
m} are determined by the equation (3.60) with χR → χR,0 and χI → χI,0.

Going back to the original variables this means that the leading order solutions for the

normalizable parts of the bulk fields have the scaling forms

ΦR,I(t, v) = v1/5ΦR,I(tv
2/5, 1), (3.72)
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φ(t, v) = v2/5φ(tv2/5, 1). (3.73)

This implies that the expectation values of the order parameter 〈O〉 and the charge density

〈ρ〉 in the boundary theory obey the Kibble-Zurek type scaling relations

〈O(t, v)〉 = v1/5F (tv2/5), (3.74)

〈ρ(t, v)〉 = v2/5G(tv2/5). (3.75)

4 Gravity backreaction

In this section we consider the backreaction of the metric for the case d = 3. A similar

discussion will hold for other dimensionalities. The set-up is the same as in the previous

section. We consider the system with the chemical potential tuned exactly to µ = µc and

then turn on a source for the order parameter which is a function of time only. The full

equations of motion are now given by

∇2Φ = m2Φ, (4.1)

1√−g
∂µ

√−ggµνgρσFνρ = Jσ, (4.2)

Rµν −
1

2
gµνR− 6gµν =

1

2
FµλFν

λ +
1

2
(∇µΦ∇νΦ

∗ +∇νΦ∇µΦ
∗)

− gµν
2

(

1

4
FρσF

ρσ +m2|Φ|2 + |DΦ|2
)

. (4.3)

where we have put κ2 = 1/2. The symmetries of the system allow gauge choices leading to

the following forms of the fields [33]

ds2 = r2
(

eA(r,t)B(r, t)dθ2 + dx2 + dy2 − eC(r,t)dt2
)

+
dr2

r2B(r, t)
, (4.4)

At = φ(r, t), Φ = Φ(r, t). (4.5)

The complete equations of motion are given in the appendix.

4.1 Static solutions and scaling

When the fields are independent of time, the equations of motion simplify [33]. The coupled

Maxwell-scalar equations become

Φ′′ +

(

5

r
+

A′

2
+

B′

B
+

C ′

2

)

Φ′ +
1

r2B

(

e−Cφ2

r2
−m2

)

Φ = 0 , (4.6)

φ′′ +

(

3

r
+

A′

2
+

B′

B
− C ′

2

)

φ′ − 2Φ2φ

r2B
= 0 . (4.7)

The nontrivial components of the Einstein equations (4.3) are the tt, rr, θθ and xx com-

ponents. However one of them is the constraint equation and we have only three dy-

namical equations. Following [33], we take linear combinations of these equations. From
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gθθ(Gθθ −Tθθ)− grr(Grr −Trr) = 0 (where GAB is the Einstein tensor and TAB is the bulk

energy momentum tensor), we obtain

A′ =
2r2C ′′ + r2C ′2 + 4rC ′ + 4r2Φ′2 − 2e−Cφ′2

r(6 + rC ′)
, (4.8)

and, from gxx(Gxx − Txx)− gtt(Gtt − Ttt) = 0, we obtain

C ′′ +
1

2
C ′2 +

(

5

r
+

A′

2
+

B′

B

)

C ′ −
(

φ′2 +
2φ2Φ2

r2B

)

e−C

r2
= 0. (4.9)

Finally from gxx(Gxx − Txx)− gtt(Gtt − Ttt)− gθθ(Gθθ − Tθθ) = 0, we obtain

B′

(

3

r
− C ′

2

)

+B

(

Φ′2 − 1

2
A′C ′ +

e−Cφ′2

2r2
+

12

r2

)

+
1

r2

(

e−Cφ2Φ2

r2
+m2Φ2 − 12

)

= 0 . (4.10)

The static AdS soliton solution is given by

Φ = 0, φ = µ, A = 0, B = h(r) ≡ 1−
(r0
r

)4
, C = 0. (4.11)

There is a critical value µ = µc such that for µ > µc this is not the favored solution —

rather the solution is a hairy soliton which has been found in [33]. This is a solution with

a vanishing source, i.e. the fields do not have a non-normalizable piece. We are, however,

interested in solutions with a source J . We will work exactly at µ = µc so that for J ≪ 1

the departure from the solution (4.11) is small. The fields can be then expanded as

Φ(r) = Jf(r) + Jγχ(r), (4.12)

φ(r) = µ+ Jβα(r), (4.13)

A(r) = Jδa(r), (4.14)

B(r) = h(r) + J ǫb(r), (4.15)

C(r) = Jηc(r). (4.16)

The strategy is to now look at the static equations at the lowest nontrivial order of J and

look for solutions for χ, α, a, b, c which start at O(J0) . The leading terms in (4.7) yield

Jβα′′ +

(

3

r
+

h′

h

)

Jβα′ − 2µJ2γχ2

r2h
= 0 . (4.17)

Thus there is a O(J0) solution for α, χ if β = 2γ. Similarly (4.9) leads to

Jηc′′ +

(

5

r
+

h′

h

)

Jηc′ −
(

2µ2J2γχ2

r2h

)

1

r2
= 0, (4.18)

which implies η = 2γ. To leading order the equation (4.8) gives

Jδa′ =
2r2J2γc′′ + 4rJ2γc′ + 4r2J2γχ′2

6r
. (4.19)
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This leads to δ = 2γ. The component of the Einstein equations (4.10) becomes

3

r
J ǫb′ + h′

(

−J2γc′

2

)

+ h
(

J2γχ′2
)

+
12

r2
J ǫb+

1

r2

(

µ2

r2
+m2

)

J2γχ2 = 0 , (4.20)

so that we obtain ǫ = 2γ. Finally the scalar equation of motion (4.6) becomes

Jf ′′ + Jγχ′′ +

(

5

r
+

h′

h

)

(Jf ′ + Jγχ) + J2γ

(

a′

2
+

b′

h
− h′b

h2
+

c′

2

)

Jγχ′

+
1

r2h

(

µ2

r2
−m2

)

(Jf ′ + Jγχ) +
J2γ

r2h

(

1

r2
(2µα− µ2c)

)

Jγχ

−J2γb

r2h2

(

µ2

r2
−m2

)

Jγχ = 0. (4.21)

Using the definition of the operator D

D(f) ≡ f ′′ +

(

5

r
+

h′

h

)

f ′ +
1

r2h

(

µ2

r2
−m2

)

f ′, (4.22)

this becomes

JD(f) + JγD(χ) + J3γ

(

a′

2
+

b′

h
− h′b

h2
+

c′

2

)

χ′

+
J3γ

r2h

(

1

r2
(2µα− µ2c)

)

χ− J3γb

r2h2

(

µ2

r2
−m2

)

χ = 0. (4.23)

Since we are exactly at µ = µc, the operator D has a zero mode. For this mode the first

two terms in (4.23) vanish and comparing the last three terms one immediately obtains

γ = 1/3. Thus the results are summarized as

Φ(r) = Jf(r) + J1/3χ(r), (4.24)

φ(r) = µ+ J2/3α(r), (4.25)

A(r) = J2/3a(r), (4.26)

B(r) = h(r) + J2/3b(r), (4.27)

C(r) = J2/3c(r). (4.28)

It can be checked that for small J the usual relation between the subleading pieces of the

gauge field and the metric with the boundary theory current and energy momentum tensor

expectation values is unchanged. Therefore the critical behavior of the order parameter

〈O〉, the charge density and the energy momentum tensor are

〈O〉 ∼ J1/3, 〈ρ〉 ∼ J2/3, 〈Tµν〉 ∼ J2/3. (4.29)

4.2 Adiabaticity breakdown

We now follow the treatment of section (3.2) to investigate the manner in which adiabaticity

breaks for a time dependent source J(t) as we approach the critical point at J = 0. The

derivative expansions for the various fields are

ΦR = Φ
(0)
R + ǫΦ

(1)
R + ǫ2Φ

(2)
R + · · · ,
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ΦI = Φ
(0)
I + ǫΦ

(1)
I + ǫ2Φ

(2)
I + · · · ,

At = φ(0) + ǫα(1) + ǫ2α(2) + · · · ,
A = A(0) + ǫa(1) + ǫ2a(2) + · · · ,
B = B(0) + ǫb(1) + ǫ2b(2) + · · · ,
C = C(0) + ǫc(1) + ǫ2c(2) + · · · , (4.30)

where ǫ is the adiabaticity parameter and the lowest order solutions are obtained from the

static solutions by replacing the constant source J by the time dependent source J(t),

Φ
(0)
R (r, t) = J(t)f0(r) + J(t)1/3χ

(0)
R (r), (4.31)

Φ
(0)
I (r, t) = 0, (4.32)

φ(0)(r, t) = µ+ J(t)2/3α(0)(r), (4.33)

A(0)(r, t) = J(t)2/3a(0)(r), (4.34)

B(0)(r, t) = h(r) + J(t)2/3b(0)(r), (4.35)

C(0)(r, t) = J(t)2/3c(0)(r). (4.36)

The equations which determine the adiabatic corrections are obtained from the full equa-

tions of motion in the appendix, replacing ∂t → ǫ∂t, and equating terms of a given order

in ǫ. To O(ǫ), the real part of the scalar equation of motion, the Maxwell equation, and

the combinations of (rr), (tt), (xx) and (θθ) components of the Einstein equations do not

contain any time derivatives and form a set of homogeneous coupled differential equations

for Φ
(1)
R , α(1), a(1), b(1) and c(1). For example the real part of the scalar field equation yields

Φ′′

R +

(

5

r
+

A′

2
+

B′

B
+

C ′

2

)

Φ′

R +
1

r2B

(

e−Cφ2

r2
−m2

)

ΦR

− e−C

r4B

[

Φ̈R +
Ȧ− Ċ

2
Φ̇R + 2φΦ̇I + φ̇ΦI +

φ

2
(Ȧ− Ċ)ΦI

]

= 0 . (4.37)

Since Φ
(0)
I = 0, all the terms which contain time derivatives in (4.37) are at least O(ǫ2).

We can now expand the fields which appear in the first two lines of (4.37) in powers of ǫ.

To O(ǫ) this yields

(Φ
(1)
R )′′+

(

5

r
+

(A(0))′

2
+

(B(0))′

B(0)
+

(C(0))′

2

)

(Φ
(1)
R )′

+

(

(a(1))′

2
+

(b(1))′

B(0)
− (B(0))′b(1)

(B(0))2
+

(c(1))′

2

)

(Φ
(0)
R )′

+
1

r2B(0)

(

e−C(0)

r2

(

2φ(0)φ(1) − c(1)(φ(0))2 − b(1)

B(0)
(φ(0))2

)

+m2 b(1)

B(0)

)

Φ
(0)
R

+
1

r2B(0)

(

e−C(0)
(φ(0))2

r2
−m2

)

Φ
(1)
R = 0. (4.38)
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Similarly the Maxwell’s equation (A.3) and the diagonal components of the Einstein equa-

tions (A.4)–(A.6) lead to homogeneous linear differential equations for Φ
(1)
R , α(1), a(1), b(1)

and c(1). Since these corrections have to satisfy regularity conditions in the interior as

well as normalizable boundary conditions at the boundary, and the equations which govern

them do not involve any inhomogeneous term, the solutions are trivial, i.e.

Φ
(1)
R = α(1) = a(1) = b(1) = c(1) = 0. (4.39)

The equations which involve time derivatives of the zeroth order fields are those which

follow from the imaginary part of the scalar field equation, the (rt) component of the

Einstein equations and the r component of the Maxwell equations which is the constraint

equation corresponding to (3.37). The imaginary part of the scalar equation reads

Φ′′

I +

(

5

r
+

A′

2
+

B′

B
+

C ′

2

)

Φ′

I +
1

r2B

(

e−Cφ2

r2
−m2

)

ΦI

− e−C

r4B

[

Φ̈I +
Ȧ− Ċ

2
Φ̇I − 2φΦ̇R − φ̇ΦR − Ȧ− Ċ

2
φΦR

]

= 0 . (4.40)

We now substitute the adiabatic expansions (4.30) with the leading order fields given

by (4.36) and retain the lowest order terms in a small J expansion. This may be written

in terms of the operator D introduced in (4.22),

D(Φ
(1)
I ) + J2/3

(

a(0)
′

2
+

b(0)
′

h
− h′b(0)

h2
+

c(0)
′

2

)

(Φ
(1)
I )′ +

J2/3

r2h

(

1

r2
(2µα(0) − µ2c(0))

)

Φ
(1)
I

− J2/3b(0)

r2h2

(

µ2

r2
−m2

)

Φ
(1)
I = − 2

3r4h
µJ−2/3J̇χ

(0)
R . (4.41)

As in the previous section, the source is proportional to the time derivative of J(t) which

arises from the time derivative of Φ
(0)
R . Since the operator D has a zero mode we can

estimate Φ
(1)
I by perturbation theory, leading to

Φ
(1)
I ∼ J−4/3J̇ , (4.42)

as in (3.43). The condition for adiabaticity breakdown is therefore the same as in section

2, equation (3.45).

The other equation which contains time derivatives is the (rt) component of the Ein-

stein equations, which becomes

− 3Ḃ

2rB
− 1

4
ȦA′−ḂA′

2B
− ȦB′

4B
+

ȦC ′

4
+

ḂC ′

4B
− 1

2
Ȧ′ − Ḃ′

2B

− Φ̇RΦ
′

R − Φ̇IΦ
′

I − φΦIΦ
′

R + φΦRΦ
′

I = 0. (4.43)

This is a constraint equation and once this equation is satisfied at some constant r slice,

the (tt) component of Einstein equations guarantee that this is satisfied everywhere. For

large values of r the equation (4.43) becomes

Ṫtt = 2µB
(1)
I A

(0)
R +O(J1/3J̇), (4.44)
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where we have written Φ
(a)
I,R ∼ A

(a)
I,Rr

−∆− +B
(a)
I,Rr

−∆+ and Ttt denotes the boundary energy

momentum tensor

Ttt =
1

8πG

(

−1

2
+

1

2
J2/3htt − 2J2/3hrr

)

, (4.45)

and the asymptotic form of the metric components can be shown to be

gtt → r2

(

−1− J2/3htt
r4

)

,

grr →
1

r2h(r)

(

1− J2/3hrr
r4

)

. (4.46)

Clearly both sides of (4.44) are proportional to J−1/3J̇ . This shows the consistency of our

lowest order adiabatic solution.

4.3 Scaling solution

In the critical region we may set J(t) ∼ J0vt. Following the analysis in section 3.3, we now

show that the complete set of equations of motion have scaling solutions. As in section 3.3,

the first step is to rescale time

t → η = v2/5t, (4.47)

and separate out the source part and fields as

ΦR = J(v−2/5η)r−∆− + v1/5χR, ΦI = v1/5χI , φ = µ+ v2/5α,

A = v2/5a, B = h+ v2/5b, C = v2/5c. (4.48)

The equations of motion can be now expanded for small v. The scalar field equations (A.1)

and (A.2) lead to

v1/5D(χR) + v3/5

[

J0ηD(r−∆−) +

(

a′

2
+

b′

h
− h′b′

h2
+

c′

2

)

χ′

R

+
1

r2h

(

− b

h

(

µ2

r2
−m2

)

− µ2c

r2
+

2µα

r2

)

χR − 2µ

r4h
χ̇I

]

+O(v) = 0, (4.49)

v1/5D(χI) + v3/5

[

(

a′

2
+

b′

h
− h′b′

h2
+

c′

2

)

χ′

I

+
1

r2h

(

− b

h

(

µ2

r2
−m2

)

− µ2c

r2
+

2µα

r2

)

χI +
2µ

r4h
χ̇R

]

+O(v) = 0. (4.50)

The Maxwell equation (A.3) yield

v2/5
[

1

r3
∂r

(

r3h∂rα
)

− 2µ

r2
(

χ2
R + χ2

I

)

]

+O(v4/5) = 0, (4.51)
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while the Einstein equations (A.4)–(A.6) become

v2/5

[

a′ − r2c′′ + 2rc′ + 2r2
(

χ′2
R + χ′2

I

)

3r

]

+O(v4/5) = 0 , (4.52)

v2/5

[

c′′ +

(

5

r
+

h′

h

)

c′ − 2µ2
(

χ2
R + χ2

I

)

r4h

]

+O(v4/5) = 0, (4.53)

v2/5
[

3

r
b′−h′

2
c′+

12

r2
b+h

(

χ′2
R+χ′2

I

)

+
1

r2

(

µ2

r2
+m2

)

(

χ2
R+χ2

I

)

]

+O(v4/5) = 0 . (4.54)

Here we have omitted the constraint equations. We see that the gauge and gravity fields α,

a, b and c are solved by using the Green’s function for the operators which appear in (4.51)–

(4.54) in a way similar to equation (3.60). It is clear from the scalar field equations that the

zero mode of D dominates in the equation (4.49) and (4.50). Therefore, in a way entirely

analogous to section 3.3, we obtain the scaling relations

〈O(t, v)〉 = v1/5F (tv2/5), (4.55)

〈ρ(t, v)〉 = v2/5G(tv2/5), (4.56)

〈Tµν(t, v)〉 = v2/5Hµν(tv
2/5), (4.57)

where we have used the usual identification of the subleading pieces of the bulk fields for

r → ∞ with the expectation values of the dual operators.

5 Conclusions and discussions

This work demonstrates that the mechanism for emergence of Kibble-Zurek scaling in

holographic models found in [15]–[17] is robust in the sense that it continues to hold when

one includes the backreaction of the gauge field and the metric. While we have shown this

in a model of a holographic superfluid, we expect that this will hold for other models of

critical points, e.g. the model with double trace deformations [34, 35] studied in [17]. We

have restricted our attention to the nature of the solution in the critical region t ∼ 0 and

concentrated on the emergence of scaling behavior.

As mentioned above, the late time behavior of the dynamics could be interesting. If we

performed the slow quench far away from a critical point, one expects the response is adia-

batic and gravitational collapse does not occur. The breakdown of adiabaticity in the gauge

and gravity sector implies that at late times the background will change substantially. It is

important to determine if the late time state is a steady state and if there is thermalization.

We leave this problem, which requires serious numerical work, for the future.

In this paper we have considered global quantum quench in holographic models in

the limit where the bulk description is purely classical. In the field theory this means

we are considering the leading term in the N = ∞ limit, where fluctuations of gauge

invariant observables are suppressed. Consequently the solutions and the resulting order

parameter are spatially homogeneous (in the field theory space directions). This limit is

adequate to uncover the scaling properties of local observables, but not adequate to discuss
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the other important aspect of Kibble-Zurek physics, viz. defect formation, which requires

inhomogeneous solutions. The latter requires a treatment of fluctuations, which have been

modelled by adding random noise to the bulk equations in [18, 19]. It would be interesting

to see what happens to the route to scaling in the presence of such noise.
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A Complete equations of motion in section 4

In this appendix, we show the equations of motion (4.1)–(4.3) explicitly. The equations for

the scalars become

Φ′′

R +

(

5

r
+

A′

2
+

B′

B
+

C ′

2

)

Φ′

R +
1

r2B

(

e−Cφ2

r2
−m2

)

ΦR

− e−C

r4B

[

Φ̈R +
Ȧ− Ċ

2
Φ̇R + 2φΦ̇I + φ̇ΦI +

φ

2
(Ȧ− Ċ)ΦI

]

= 0 , (A.1)

Φ′′

I +

(

5

r
+

A′

2
+

B′

B
+

C ′

2

)

Φ′

I +
1

r2B

(

e−Cφ2

r2
−m2

)

ΦI

− e−C

r4B

[

Φ̈I +
Ȧ− Ċ

2
Φ̇I − 2φΦ̇R − φ̇ΦR − Ȧ− Ċ

2
φΦR

]

= 0 . (A.2)

The Maxwell equation becomes

φ′′ +

(

3

r
+

A′

2
+

B′

B
− C ′

2

)

φ′ − 2

r2B

(

Φ̇RΦI − ΦRΦ̇I + |φΦ2|
)

= 0 . (A.3)

We also have the constraint equation corresponding to (3.4) but we omit it here.

Following [33], we take linear combinations of the Einstein equations. From gθθ(Gθθ −
Tθθ) − grr(Grr − Trr) = 0 (where GAB is the Einstein tensor and TAB is the bulk energy

momentum tensor), we obtain

A′ =
2r2C ′′ + r2C ′2 + 4rC ′ + 4r2

(

Φ′2
R +Φ′2

I

)

− 2e−Cφ′2

r(6 + rC ′)

+
e−C

r3B(6 + rC ′)

[

2Ä+ Ȧ2 +
2ȦḂ

B
+

4B̈

B
− 4Ḃ2

B2
− ȦĊ − 2ḂĊ

B

]

, (A.4)

and, from gxx(Gxx − Txx)− gtt(Gtt − Ttt) = 0, we obtain

C ′′ +
1

2
C ′2 +

(

5

r
+

A′

2
+

B′

B

)

C ′ −
(

φ′2 +
2φ2(Φ2

R +Φ2
I)

r2B

)

e−C

r2
(A.5)
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+
e−C

r4B

[

−Ä− Ȧ2

2
− ȦḂ

B
− Ḃ2

B2
+

ȦĊ

2
+ 4φ

(

ΦRΦ̇I − Φ̇RΦI

)

− 2
(

Φ̇2
R + Φ̇2

I

)

]

= 0.

From gxx(Gxx − Txx)− gtt(Gtt − Ttt)− gθθ(Gθθ − Tθθ) = 0, we obtain

B′

(

3

r
− C ′

2

)

+B

(

Φ′2
R +Φ′2

I − 1

2
A′C ′ +

e−Cφ′2

2r2
+

12

r2

)

(A.6)

+
1

r2

(

e−Cφ2(Φ2
R +Φ2

I)

r2
+m2(Φ2

R +Φ2
I)− 12

)

+
e−C

r4

[

Ä+
Ȧ2

2
+
ȦḂ

B
+
B̈

B
− Ḃ2

2B
− ȦĊ

2
− ḂĊ

2
−2φ

(

ΦRΦ̇I−Φ̇RΦI

)

+
(

Φ̇2
R+Φ̇2

I

)

]

=0 .

The (tr) component of the equation of motion, which is a constraint equation, becomes

− 3Ḃ

2rB
− 1

4
ȦA′ − ḂA′

2B
− ȦB′

4B
+

ȦC ′

4
+

ḂC ′

4B
− 1

2
Ȧ′ − Ḃ′

2B

− Φ̇RΦ
′

R − Φ̇IΦ
′

I + φ
(

ΦRΦ
′

I − ΦIΦ
′

R

)

= 0. (A.7)
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[26] A.M. Garćıa-Garćıa, H.B. Zeng and H.Q. Zhang, A thermal quench induces spatial

inhomogeneities in a holographic superconductor, JHEP 07 (2014) 096 [arXiv:1308.5398]

[INSPIRE].

[27] S. Khlebnikov, Relaxation dynamics in a strongly coupled Fermi superfluid,

arXiv:1406.1789 [INSPIRE].

– 21 –

http://dx.doi.org/10.1103/PhysRevE.74.047101
http://dx.doi.org/10.1038/nature07334
http://dx.doi.org/10.1103/PhysRevLett.98.110402
http://dx.doi.org/10.1103/PhysRevLett.106.115301
http://dx.doi.org/10.1038/nphys2734
http://dx.doi.org/10.1038/ncomms3290
http://arxiv.org/abs/1302.5343
http://dx.doi.org/10.1007/JHEP01(2012)103
http://arxiv.org/abs/1109.3909
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3909
http://dx.doi.org/10.1007/JHEP03(2013)146
http://arxiv.org/abs/1211.7076
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.7076
http://dx.doi.org/10.1007/JHEP12(2013)070
http://arxiv.org/abs/1308.4061
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4061
http://arxiv.org/abs/1406.2329
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2329
http://arxiv.org/abs/1407.1862
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1862
http://dx.doi.org/10.1007/JHEP07(2010)050
http://arxiv.org/abs/1005.0633
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.0633
http://dx.doi.org/10.1103/PhysRevLett.110.015301
http://arxiv.org/abs/1207.4194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4194
http://dx.doi.org/10.1007/JHEP06(2014)019
http://arxiv.org/abs/1212.1049
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1049
http://dx.doi.org/10.1103/PhysRevLett.110.171602
http://arxiv.org/abs/1212.4498
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4498
http://dx.doi.org/10.1103/PhysRevD.89.046004
http://arxiv.org/abs/1304.6349
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6349
http://dx.doi.org/10.1007/JHEP07(2013)030
http://arxiv.org/abs/1305.1600
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1600
http://dx.doi.org/10.1007/JHEP07(2014)096
http://arxiv.org/abs/1308.5398
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.5398
http://arxiv.org/abs/1406.1789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1789


J
H
E
P
0
1
(
2
0
1
5
)
0
8
4

[28] A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic

plasmas, JHEP 05 (2013) 067 [arXiv:1302.2924] [INSPIRE].

[29] A. Buchel, R.C. Myers and A. van Niekerk, Universality of abrupt holographic quenches,

Phys. Rev. Lett. 111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].

[30] S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in

conformal field theories, Phys. Rev. Lett. 112 (2014) 171601 [arXiv:1401.0560] [INSPIRE].

[31] N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of

magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010]

[INSPIRE].

[32] T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at

zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].

[33] G.T. Horowitz and B. Way, Complete phase diagrams for a holographic

superconductor/insulator system, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].

[34] T. Faulkner, G.T. Horowitz and M.M. Roberts, New stability results for Einstein scalar

gravity, Class. Quant. Grav. 27 (2010) 205007 [arXiv:1006.2387] [INSPIRE].

[35] T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from

multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].

– 22 –

http://dx.doi.org/10.1007/JHEP05(2013)067
http://arxiv.org/abs/1302.2924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.2924
http://dx.doi.org/10.1103/PhysRevLett.111.201602
http://arxiv.org/abs/1307.4740
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4740
http://dx.doi.org/10.1103/PhysRevLett.112.171601
http://arxiv.org/abs/1401.0560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.0560
http://dx.doi.org/10.1103/PhysRevD.82.045002
http://arxiv.org/abs/1003.0010
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0010
http://dx.doi.org/10.1007/JHEP03(2010)131
http://arxiv.org/abs/0911.0962
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0962
http://dx.doi.org/10.1007/JHEP11(2010)011
http://arxiv.org/abs/1007.3714
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3714
http://dx.doi.org/10.1088/0264-9381/27/20/205007
http://arxiv.org/abs/1006.2387
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2387
http://dx.doi.org/10.1007/JHEP04(2011)051
http://arxiv.org/abs/1008.1581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1581

	University of Kentucky
	UKnowledge
	1-2015

	Kibble-Zurek Scaling in Holographic Quantum Quench: Backreaction
	Sumit R. Das
	Takeshi Morita
	Repository Citation
	Kibble-Zurek Scaling in Holographic Quantum Quench: Backreaction
	Notes/Citation Information
	Digital Object Identifier (DOI)



