841 research outputs found

    Tax Competition under Minimum Rates: The Case of European Diesel Excises

    Get PDF
    This paper estimates Nash-type fiscal reaction functions for European governments competing for revenue from diesel excises. It appears that European governments strategically set their excise levels by responding to their neighbors’ tax rates. This provides evidence for the presence of tax competition in diesel excises. In fact, a 10 percent higher rate in neighboring countries (in terms of the user price) induces a country to raise its own rate by between 2 and 3 percent. This impact is robust for alternative specifications. By imposing restrictions on excise levels, EU harmonization of excises in 1987 and the introduction of a minimum in 1992 exerted a positive impact on the excise level in a number of EU countries. It has not, however, significantly reduced the intensity of tax competition. Indeed, strategic tax responses have not significantly been reduced by these harmonization policies. We also find that high-tax countries appear to compete more aggressively than low-tax countries in the sense that they feature larger strategic tax responses. There is no significant difference between large and small countries.Diesel excise, strategic tax setting, minimum rates, European Union

    The GROUSE project III: Ks-band observations of the thermal emission from WASP-33b

    Get PDF
    In recent years, day-side emission from about a dozen hot Jupiters has been detected through ground-based secondary eclipse observations in the near-infrared. These near-infrared observations are vital for determining the energy budgets of hot Jupiters, since they probe the planet's spectral energy distribution near its peak. The aim of this work is to measure the Ks-band secondary eclipse depth of WASP-33b, the first planet discovered to transit an A-type star. This planet receives the highest level of irradiation of all transiting planets discovered to date. Furthermore, its host-star shows pulsations and is classified as a low-amplitude delta-Scuti. As part of our GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS instrument on the William Herschel Telescope (WHT). The telescope was significantly defocused to avoid saturation of the detector for this bright star (K~7.5). To increase the stability and the cadence of the observations, they were performed in staring mode. We collected a total of 5100 and 6900 frames for the first and the second night respectively, both with an average cadence of 3.3 seconds. On the second night the eclipse is detected at the 12-sigma level, with a measured eclipse depth of 0.244+0.027-0.020 %. This eclipse depth corresponds to a brightness temperature of 3270+115-160 K. The measured brightness temperature on the second night is consistent with the expected equilibrium temperature for a planet with a very low albedo and a rapid re-radiation of the absorbed stellar light. For the other night the short out-of-eclipse baseline prevents good corrections for the stellar pulsations and systematic effects, which makes this dataset unreliable for eclipse depth measurements. This demonstrates the need of getting a sufficient out-of-eclipse baseline.Comment: 12 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns

    Get PDF
    We report a 4.8 sigma detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1 sigma with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    De vruchten van de uitbreiding

    Get PDF
    De scepsis over een mogelijk overhaaste uitbreiding neemt toe. Welke effecten op consumptie en handel mogen worden verwacht

    Low-crosstalk bifurcation detectors for coupled flux qubits

    Full text link
    We present experimental results on the crosstalk between two AC-operated dispersive bifurcation detectors, implemented in a circuit for high-fidelity readout of two strongly coupled flux qubits. Both phase-dependent and phase-independent contributions to the crosstalk are analyzed. For proper tuning of the phase the measured crosstalk is 0.1 % and the correlation between the measurement outcomes is less than 0.05 %. These results show that bifurcative readout provides a reliable and generic approach for multi-partite correlation experiments.Comment: Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters and may be found at http://link.aip.org/link/?apl/96/12350

    The GROUSE project II: Detection of the Ks-band secondary eclipse of exoplanet HAT-P-1b

    Full text link
    Context: Only recently it has become possible to measure the thermal emission from hot-Jupiters at near-Infrared wavelengths using ground-based telescopes, by secondary eclipse observations. This allows the planet flux to be probed around the peak of its spectral energy distribution, which is vital for the understanding of its energy budget. Aims: The aim of the reported work is to measure the eclipse depth of the planet HAT-P-1b at 2.2micron. This planet is an interesting case, since the amount of stellar irradiation it receives falls in between that of the two best studied systems (HD209458 and HD189733), and it has been suggested to have a weak thermal inversion layer. Methods: We have used the LIRIS instrument on the William Herschel Telescope (WHT) to observe the secondary eclipse of HATP-1b in the Ks-band, as part of our Ground-based secondary eclipse (GROUSE) project. The observations were done in staring mode, while significantly defocusing the telescope to avoid saturation on the K=8.4 star. With an average cadence of 2.5 seconds, we collected 6520 frames during one night. Results: The eclipse is detected at the 4sigma level, the measured depth being 0.109+/-0.025%. The uncertainties are dominated by residual systematic effects, as estimated from different reduction/analysis procedures. The measured depth corresponds to a brightness temperature of 2136+150-170K. This brightness temperature is significantly higher than those derived from longer wavelengths, making it difficult to fit all available data points with a plausible atmospheric model. However, it may be that we underestimate the true uncertainties of our measurements, since it is notoriously difficult to assign precise statistical significance to a result when systematic effects are important.Comment: 7 pages, 10 figures, Accepted for publication in A&

    Inhomogeneous Superconductivity in Comb-Shaped Josephson Junction Networks

    Full text link
    We show that some of the Josephson couplings of junctions arranged to form an inhomogeneous network undergo a non-perturbative renormalization provided that the network's connectivity is pertinently chosen. As a result, the zero-voltage Josephson critical currents IcI_c turn out to be enhanced along directions selected by the network's topology. This renormalization effect is possible only on graphs whose adjacency matrix admits an hidden spectrum (i.e. a set of localized states disappearing in the thermodynamic limit). We provide a theoretical and experimental study of this effect by comparing the superconducting behavior of a comb-shaped Josephson junction network and a linear chain made with the same junctions: we show that the Josephson critical currents of the junctions located on the comb's backbone are bigger than the ones of the junctions located on the chain. Our theoretical analysis, based on a discrete version of the Bogoliubov-de Gennes equation, leads to results which are in good quantitative agreement with experimental results.Comment: 4 pages, 2 figures, revte

    Spectroscopic Transit Search: a self-calibrating method for detecting planets around bright stars

    Get PDF
    We search for transiting exoplanets around the star β\beta Pictoris using high resolution spectroscopy and Doppler imaging that removes the need for standard star observations. These data were obtained on the VLT with UVES during the course of an observing campaign throughout 2017 that monitored the Hill sphere transit of the exoplanet β\beta Pictoris b. We utilize line profile tomography as a method for the discovery of transiting exoplanets. By measuring the exoplanet distortion of the stellar line profile, we remove the need for reference star measurements. We demonstrate the method with white noise simulations, and then look at the case of β\beta Pictoris, which is a δ\delta Scuti pulsator. We describe a method to remove the stellar pulsations and perform a search for any transiting exoplanets in the resultant data set. We inject fake planet transits with varying orbital periods and planet radii into the spectra and determine the recovery fraction. In the photon noise limited case we can recover planets down to a Neptune radius with an ∼\sim80% success rate, using an 8 m telescope with a R∼100,000R\sim 100,000 spectrograph and 20 minutes of observations per night. The pulsations of β\beta Pictoris limit our sensitivity to Jupiter-sized planets, but a pulsation removal algorithm improves this limit to Saturn-sized planets. We present two planet candidates, but argue that their signals are most likely caused by other phenomena. We have demonstrated a method for searching for transiting exoplanets that (i) does not require ancillary calibration observations, (ii) can work on any star whose rotational broadening can be resolved with a high spectral dispersion spectrograph and (iii) provides the lowest limits so far on the radii of transiting Jupiter-sized exoplanets around β\beta Pictoris with orbital periods from 15 days to 200 days with >50% coverage.Comment: Accepted for publication in A&A, 8 pages, 8 figures. The Github repository can be found at https://github.com/lennartvansluijs/Spectroscopic-Transit-Searc
    • …
    corecore