14 research outputs found

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi

    A HPLC-based glycoanalytical protocol allows the use of natural O-glycans derived from glycoproteins as substrates for glycosidase discovery from microbial culture

    Full text link
    Many disorders are characterised by changes in O-glycosylation, but analysis of O-glycosylation has been limited by the availability of specific endo- and exo-glycosidases. As a result chemical methods are employed. However, these may give rise to glycan degradation, so therefore novel O-glycosidases are needed. Artificial substrates do not always identify every glycosidase activity present in an extract. To overcome this, an HPLC-based protocol for glycosidase identification from microbial culture was developed using natural O-glycans and O-glycosylated glycoproteins (porcine stomach mucin and fetuin) as substrates. O-glycans were released by ammonia-based β-elimination for use as substrates, and the bacterial culture supernatants were subjected to ultrafiltration to separate the proteins from glycans and low molecular size molecules. Two bacterial cultures, the psychrotroph Arthrobacter C1-1 and a Corynebacterium isolate, were examined as potential sources of novel glycosidases. Arthrobacter C1-1 culture contained a β-galactosidase and N-acetyl-β-glucosaminidase when assayed using 4-methylumbelliferyl substrates, but when defucosylated O-glycans from porcine stomach mucin were used as substrate, the extract did not cleave β-linked galactose or N-acetylglucosamine. Sialidase activity was identified in Corynebacterium culture supernatant, which hydrolysed sialic acid from fetuin glycans. When both culture supernatants were assayed using the glycoproteins as substrate, neither contained endoglycosidase activity. This method may be applied to investigate a microbial or other extract for glycosidase activity, and has potential for scale-up on high-throughput platforms

    The expression of mucin genes and the presence of mucin gene products in the equine endometrium

    Full text link
    In the equine reproductive tract, little is known about mucin gene expression and the role of mucins in barrier function and host-cell interaction. The aims of the study were to identify equine orthologs of mammalian mucin genes using available equine sequence data, to profile expression of equine orthologous mucin genes in the endometrium using reverse transcriptase polymerase chain reaction (RT-PCR), to determine spatial expression patterns of mucin genes using in situ hybridisation, and to confirm the presence of mucin gene products using Western blotting and equine-specific mucin antibodies during oestrus and dioestrus. While the mucin gene expression pattern in equine endometrium is similar to that of other mammals, several mucins appear to be uniquely expressed in this tissue (eqMUC3B, 7, 18, and 20) and one is hormonally regulated (eqMUC3B)

    High-throughput transcriptomics reveals common and strain-specific responses of human macrophages to infection with Mycobacterium abscessus Smooth and Rough variants

    Get PDF
    BACKGROUND: Mycobacterium abscessus (MAB) is an emerging pathogen causing pulmonary infections in those with inflammatory lung disorders, such as Cystic Fibrosis (CF), and is associated with the highest fatality rate among rapidly growing mycobacteria (RGM). Phenotypically, MAB manifests as either a Smooth (MAB-S) or a Rough (MAB-R) morphotype, which differ in their levels of cell wall glycopeptidolipids (GPLs) and in their pathogenicity in vivo. As one of the primary immune cells encountered by MAB, we sought to examine the early transcriptional events within macrophages, following infection with both MAB-S or MAB-R. RESULTS: We sampled the transcriptomes (mRNA and miRNA) of THP-1-derived macrophages infected with both MAB-R and MAB-S at 1, 4 and 24 h post-infection (hpi) using RNA-seq. A core set of 606 genes showed consistent expression profiles in response to both morphotypes, corresponding to the early transcriptional response to MAB. The core response is type I Interferon (IFN)-driven, involving the NF-κB and MAPK signaling pathways with concomitant pro-inflammatory cytokine production, and network analysis identified STAT1, EGR1, and SRC as key hub and bottleneck genes. MAB-S elicited a more robust transcriptional response at both the mRNA and miRNA levels, which was reflected in higher cytokine levels in culture supernatants. The transcriptional profiles of macrophages infected with both morphotypes were highly correlated, however, and a direct comparison identified few genes to distinguish them. Most of the induced miRNAs have previously been associated with mycobacterial infection and overall miRNA expression patterns were similarly highly correlated between the morphotypes. CONCLUSIONS: The report here details the first whole transcriptome analysis of the early macrophage response to MAB infection. The overall picture at the early stages of macrophage infection is similar to that of other mycobacteria, reflected in a core type I IFN and pro-inflammatory cytokine response. Large-scale transcriptional differences in the host response to the different MAB morphotypes are not evident in the early stages of infection, however the subset of genes with distinct expression profiles suggest potentially interesting differences in internal trafficking of MAB within macrophages. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2246-1) contains supplementary material, which is available to authorized users
    corecore