47 research outputs found

    Application of a standard risk assessment scheme to a North Africa contaminated site (Sfax, Tunisia) - tier 1

    Get PDF
    Phosphorus is a critical element to agriculture, consequently global phosphate rock demand will remain rising to feed a growing world population. The beneficiation of phosphorous ore gives rise to several tons of a waste by-product [phosphogypsum (PG)] which valorisation is limited, within other reasons, by the risks posed to environment and human health. Although threatening, the accumulation in stacks is the only procedure so far practiced by several countries as a means to get rid of this industrial externality. As part of a NATO Science for Peace Project (SfP 983311) this study describes the application of an environmental risk assessment (ERA) framework, to assess the risks posed by a PG stack to the surrounding soils, in Sfax, Republic of Tunisia. The ERA followed a weight of evidence approach, supported by two lines of evidence (LoE): the chemical (ChemLoE) and the ecotoxicological (EcotoxLoE). Integrated risks point for risk values greater than 0.5 in soils collected in PG stack surrounding area. Soil salinization, has likely contributed to the exacerbation of risks, as well as to the lack of consistency between both LoEs. This study highlights the need of rethinking the weight given to each LoE in ERA, in areas where soil salinization is a reality.publishe

    TNFRSF1B +676 T>G polymorphism predicts survival of non-Small cell lung cancer patients treated with chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dysregulation of gene expression in the TNF-TNFR superfamily has been involved in various human cancers including non-small cell lung cancer (NSCLC). Furthermore, functional polymorphisms in <it>TNF-α </it>and <it>TNFRSF1B </it>genes that alter gene expression are likely to be associated with risk and clinical outcomes of cancers. However, few reported studies have investigated the association between potentially functional SNPs in both <it>TNF-α </it>and <it>TNFRSF1B </it>and prognosis of NSCLC patients treated with chemoradiotherapy.</p> <p>Methods</p> <p>We genotyped five potentially functional polymorphisms of <it>TNF-α </it>and <it>TNFRSF1B </it>genes [<it>TNF-α </it>-308 G>A (rs1800629) and -1031 T>C (rs1799964); <it>TNFRSF1B </it>+676 T>G (rs1061622), -1709A>T(rs652625) and +1663A>G (rs1061624)] in 225 NSCLC patients treated with chemoradiotherapy or radiotherapy alone. Kaplan-Meier survival analysis, log-rank tests and Cox proportional hazard models were used to evaluate associations between these variants and NSCLC overall survival (OS).</p> <p>Results</p> <p>We found that the <it>TNFRSF1B </it>+676 GG genotype was associated with a significantly better OS of NSCLC (GG <it>vs. </it>TT: adjusted HR = 0.38, 95% CI = 0.15-0.94; GG <it>vs. </it>GT/TT: adjusted HR = 0.35, 95% CI = 0.14-0.88). Further stepwise multivariate Cox regression analysis showed that the <it>TNFRSF1B </it>+676 GG was an independent prognosis predictor in this NSCLC cohort (GG <it>vs. </it>GT/TT: HR = 0.35, 95% CI = 0.14-0.85), in the presence of node status (N<sub>2-3 </sub><it>vs. </it>N<sub>0-1</sub>: HR = 1.60, 95% CI = 1.09-2.35) and tumor stage (T<sub>3-4 </sub><it>vs. </it>T<sub>0-2</sub>: HR = 1.48, 95% CI = 1.08-2.03).</p> <p>Conclusions</p> <p>Although the exact biological function for this SNP remains to be explored, our findings suggest a possible role of <it>TNFRSF1B </it>+676 T>G (rs1061622) in the prognosis of NSCLC. Further large and functional studies are needed to confirm our findings.</p

    Inflammatory mediators in breast cancer: Coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inflammatory chemokines CCL2 (MCP-1) & CCL5 (RANTES) and the inflammatory cytokines TNFα & IL-1β were shown to contribute to breast cancer development and metastasis. In this study, we wished to determine whether there are associations between these factors along stages of breast cancer progression, and to identify the possible implications of these factors to disease course.</p> <p>Methods</p> <p>The expression of CCL2, CCL5, TNFα and IL-1β was determined by immunohistochemistry in patients diagnosed with: (1) Benign breast disorders (=healthy individuals); (2) Ductal Carcinoma <it>In Situ </it>(DCIS); (3) Invasive Ducal Carcinoma without relapse (IDC-no-relapse); (4) IDC-with-relapse. Based on the results obtained, breast tumor cells were stimulated by the inflammatory cytokines, and epithelial-to-mesenchymal transition (EMT) was determined by flow cytometry, confocal analyses and adhesion, migration and invasion experiments.</p> <p>Results</p> <p>CCL2, CCL5, TNFα and IL-1β were expressed at very low incidence in normal breast epithelial cells, but their incidence was significantly elevated in tumor cells of the three groups of cancer patients. Significant associations were found between CCL2 & CCL5 and TNFα & IL-1β in the tumor cells in DCIS and IDC-no-relapse patients. In the IDC-with-relapse group, the expression of CCL2 & CCL5 was accompanied by further elevated incidence of TNFα & IL-1β expression. These results suggest progression-related roles for TNFα and IL-1β in breast cancer, as indeed indicated by the following: (1) Tumors of the IDC-with-relapse group had significantly higher persistence of TNFα and IL-1β compared to tumors of DCIS or IDC-no-relapse; (2) Continuous stimulation of the tumor cells by TNFα (and to some extent IL-1β) has led to EMT in the tumor cells; (3) Combined analyses with relevant clinical parameters suggested that IL-1β acts jointly with other pro-malignancy factors to promote disease relapse.</p> <p>Conclusions</p> <p>Our findings suggest that the coordinated expression of CCL2 & CCL5 and TNFα & IL-1β may be important for disease course, and that TNFα & IL-1β may promote disease relapse. Further <it>in vitro </it>and <it>in vivo </it>studies are needed for determination of the joint powers of the four factors in breast cancer, as well as analyses of their combined targeting in breast cancer.</p

    Hereditary breast cancer in Middle Eastern and North African (MENA) populations: identification of novel, recurrent and founder BRCA1 mutations in the Tunisian population

    Get PDF
    Germ-line mutations in BRCA1 breast cancer susceptibility gene account for a large proportion of hereditary breast cancer families and show considerable ethnic and geographical variations. The contribution of BRCA1 mutations to hereditary breast cancer has not yet been thoroughly investigated in Middle Eastern and North African populations. In this study, 16 Tunisian high-risk breast cancer families were screened for germline mutations in the entire BRCA1 coding region and exon–intron boundaries using direct sequencing. Six families were found to carry BRCA1 mutations with a prevalence of 37.5%. Four different deleterious mutations were detected. Three truncating mutations were previously described: c.798_799delTT (916 delTT), c.3331_3334delCAAG (3450 delCAAG), c.5266dupC (5382 insC) and one splice site mutation which seems to be specific to the Tunisian population: c.212 + 2insG (IVS5 + 2insG). We also identified 15 variants of unknown clinical significance. The c.798_799delTT mutation occurred at an 18% frequency and was shared by three apparently unrelated families. Analyzing five microsatellite markers in and flanking the BRCA1 locus showed a common haplotype associated with this mutation. This suggests that the c.798_799delTT mutation is a Tunisian founder mutation. Our findings indicate that the Tunisian population has a spectrum of prevalent BRCA1 mutations, some of which appear as recurrent and founding mutations

    Role of genetic polymorphisms in tumour angiogenesis

    Get PDF
    Angiogenesis plays a crucial role in the development, growth and spread of solid tumours. Pro- and anti-angiogenic factors are abnormally expressed in tumours, influencing tumour angiogenesis, growth and progression. Polymorphisms in genes encoding angiogenic factors or their receptors may alter protein expression and/or activity. This article reviews the literature to determine the possible role of angiogenesis-related polymorphisms in cancer. Further research studies in this potentially crucial area of tumour biology are proposed
    corecore