448 research outputs found
Limits on the Halo White Dwarf Component of Baryonic Dark Matter from the {\em Hubble Deep Field}
The MACHO collaboration lensing event statistics suggest that a significant
fraction of the dark galactic halo can be comprised of baryonic matter in the
form of white dwarf stars with masses between 0.1 and 1.0 \Msun . Such a halo
white dwarf population, in order to have escaped detection by those who observe
the white dwarf luminosity function of the disk, must have formed from an old
population. The observations indicate that the number of halo white dwarfs per
cubic parsec per unit bolometric magnitude is less than at
\Lsun; the number must rise significantly at lower luminosities to
provide the needed baryonic halo mass. Such white dwarfs may easily escape
detection in most current and earlier surveys. Though it is limited in angular
extent, the {\em Hubble Deep Field} (HDF) probes a sufficient volume of the
galactic halo to provide interesting limits on the number of halo white dwarf
stars, and on the fraction of the halo mass that they can make up. If the HDF
field can be probed for stars down to then the MACHO result suggests
that there could be up to 12 faint halo white dwarfs visible in the HDF.
Finding (or not finding) these stars in turn places interesting constraints on
star formation immediately following the formation of the galaxy.Comment: 10 pages, AASTEX, 1 table, no figures, accepted for publication in
Ap.J. Letter
Magnetar Spindown, Hyper-Energetic Supernovae, and Gamma Ray Bursts
The Kelvin-Helmholtz cooling epoch, lasting tens of seconds after the birth
of a neutron star in a successful core-collapse supernova, is accompanied by a
neutrino-driven wind. For magnetar-strength ( G) large scale
surface magnetic fields, this outflow is magnetically-dominated during the
entire cooling epoch.Because the strong magnetic field forces the wind to
co-rotate with the protoneutron star,this outflow can significantly effect the
neutron star's early angular momentum evolution, as in analogous models of
stellar winds (e.g. Weber & Davis 1967). If the rotational energy is large in
comparison with the supernova energy and the spindown timescale is short with
respect to the time required for the supernova shockwave to traverse the
stellar progenitor, the energy extracted may modify the supernova shock
dynamics significantly. This effect is capable of producing hyper-energetic
supernovae and, in some cases, provides conditions favorable for gamma ray
bursts. We estimate spindown timescales for magnetized, rotating protoneutron
stars and construct steady-state models of neutrino-magnetocentrifugally driven
winds. We find that if magnetars are born rapidly rotating, with initial spin
periods () of millisecond, that of order erg of
rotational energy can be extracted in seconds. If magnetars are born
slowly rotating ( ms) they can spin down to periods of
second on the Kelvin-Helmholtz timescale.Comment: 16 pages, 5 figures, emulateap
The effect of magnetic fields on star cluster formation
We examine the effect of magnetic fields on star cluster formation by
performing simulations following the self-gravitating collapse of a turbulent
molecular cloud to form stars in ideal MHD. The collapse of the cloud is
computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is
using both weak and strong magnetic fields. Whilst even at very low strengths
the magnetic field is able to significantly influence the star formation
process, for magnetic fields with plasma beta < 1 the results are substantially
different to the hydrodynamic case. In these cases we find large-scale
magnetically-supported voids imprinted in the cloud structure; anisotropic
turbulent motions and column density structure aligned with the magnetic field
lines, both of which have recently been observed in the Taurus molecular cloud.
We also find strongly suppressed accretion in the magnetised runs, leading to
up to a 75% reduction in the amount of mass converted into stars over the
course of the calculations and a more quiescent mode of star formation. There
is also some indication that the relative formation efficiency of brown dwarfs
is lower in the strongly magnetised runs due to the reduction in the importance
of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version
with high-res figures + movies available from
http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm
Turbulent Cooling Flows in Molecular Clouds
We propose that inward, subsonic flows arise from the local dissipation of
turbulent motions in molecular clouds. Such "turbulent cooling flows" may
account for recent observations of spatially extended inward motions towards
dense cores. These pressure-driven flows may arise from various types of
turbulence and dissipation mechanisms. For the example of MHD waves and
turbulence damped by ion-neutral friction, sustained cooling flow requires that
the outer gas be sufficiently turbulent, that the inner gas have marginal
field-neutral coupling, and that this coupling decrease sufficiently rapidly
with increasing density. These conditions are most likely met at the transition
between outer regions ionized primarily by UV photons and inner regions ionized
primarily by cosmic rays. If so, turbulent cooling flows can help form dense
cores, with speeds faster than expected for ambipolar diffusion. Such motions
could reduce the time needed for dense core formation and could precede and
enhance the motions of star-forming gravitational infall.Comment: To appear ApJL, Nov.10, 4 ApJ style pages, Postscrip
Accretion-Powered Stellar Winds II: Numerical Solutions for Stellar Wind Torques
[Abridged] In order to explain the slow rotation observed in a large fraction
of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar
winds in torquing down the stars. For this mechanism to be effective, the
stellar winds need to have relatively high outflow rates, and thus would likely
be powered by the accretion process itself. Here, we use numerical
magnetohydrodynamical simulations to compute detailed 2-dimensional
(axisymmetric) stellar wind solutions, in order to determine the spin down
torque on the star. We explore a range of parameters relevant for CTTSs,
including variations in the stellar mass, radius, spin rate, surface magnetic
field strength, the mass loss rate, and wind acceleration rate. We also
consider both dipole and quadrupole magnetic field geometries.
Our simulations indicate that the stellar wind torque is of sufficient
magnitude to be important for spinning down a ``typical'' CTTS, for a mass loss
rate of yr. The winds are wide-angle,
self-collimated flows, as expected of magnetic rotator winds with moderately
fast rotation. The cases with quadrupolar field produce a much weaker torque
than for a dipole with the same surface field strength, demonstrating that
magnetic geometry plays a fundamental role in determining the torque. Cases
with varying wind acceleration rate show much smaller variations in the torque
suggesting that the details of the wind driving are less important. We use our
computed results to fit a semi-analytic formula for the effective Alfv\'en
radius in the wind, as well as the torque. This allows for considerable
predictive power, and is an improvement over existing approximations.Comment: Accepted for publication in Ap
On the Ionisation of Warm Opaque Interstellar Clouds and the Intercloud Medium
In this paper we use a number of observations to construct an integrated
picture of the ionisation in the interiors of quiescent warm opaque
interstellar clouds and in the intercloud medium (ICM) outside dense HII
regions and hot dilute bubbles. Our main conclusion is that within 1kpc
of the sun the ionisation rate of hydrogen per unit volume in both the
interiors of such clouds and in the ICM is independent of the local density of
neutral hydrogen, and varies with position by less than 20 per cent.
These conclusions strongly favour the decaying neutrino hypothesis for the
ionisation of the interstellar medium in these regions.
Our analysis is based on a variety of observations, of which the most
remarkable is the discovery by Spitzer and Fitzpatrick (1993) that, in the four
slowly moving clouds along the line of sight to the halo star HD93521, the
column densities of both SII and CII, which individually range over a
factor 4, are proportional to the column density of HI to within 20
per cent. This proportionality is used to show that the free electrons exciting
the CII to CII are located mainly in the interiors of the clouds, rather
than in their skins, despite the large opacity of the clouds to Lyman continuum
radiation. The same conclusion also follows more unambiguously from the low
value of the H flux in this direction which was found by Reynolds
(1996) in unpublished observations.
These results are then used, in conjunction with observations of three pulsar
parallaxes and dispersion measures, and with data on HeI, NII and OI line
emissions, to constrain the ionisation of H, He, N and O and the flux of Lyman
continuum photons from O stars in the ICM.Comment: 16 pages, no figures, Latex fil
Stellar models of evolved secondaries in CVs
In this paper we study the impact of chemically evolved secondaries on CV
evolution. We find that when evolved secondaries are included a spread in the
secondary mass-orbital period plane comparable to that seen in the data is
produced for either the saturated prescription for magnetic braking or the
unsaturated model commonly used for CVs. We argue that in order to explain this
spread a considerable fraction of all CVs should have evolved stars as the
secondaries. The evolved stars become fully convective at lower orbital
periods. Therefore, even if there was an abrupt decrease in magnetic braking
for fully convective stars (contrary to open cluster data) it would not be
expected to produce a sharp break in the period distribution for CVs. We also
explore recent proposed revisions to the angular momentum loss rate for single
stars, and find that only modest increases over the saturated prescription are
consistent with the overall observed spindown pattern. We compare predictions
of our models with diagnostics of the mass accretion rate in WDs and find
results intermediate between the saturated and the older braking prescription.
Taken together these suggest that the angular momentum loss rate may be higher
in CV secondaries than in single stars of the same rotation period, but is
still significantly lower than in the traditional model. Alternative
explanations for the CV period gap are discussed.Comment: 24 pages, 9 figures. Submitted to Ap
Small Structures via Thermal Instability of Partially Ionized Plasma. I. Condensation Mode
(Shortened) Thermal instability of partially ionized plasma is investigated
by linear perturbation analysis. According to the previous studies under the
one fluid approach, the thermal instability is suppressed due to the magnetic
pressure. However, the previous studies did not precisely consider the effect
of the ion-neutral friction, since they did not treat the flow as two fluid
which is composed of ions and neutrals. Then, we revisit the effect of the
ion-neutral friction of the two fluid to the growth of the thermal instability.
According to our study, (1) The instability which is characterized by the mean
molecular weight of neutrals is suppressed via the ion-neutral friction only
when the magnetic field and the friction are sufficiently strong. The
suppression owing to the friction occurs even along the field line. If the
magnetic field and the friction are not so strong, the instability is not
stabilized. (2) The effect of the friction and the magnetic field is mainly
reduction of the growth rate of the thermal instability of weakly ionized
plasma. (3) The effect of friction does not affect the critical wavelength
lambdaF for the thermal instability. This yields that lambdaF of the weakly
ionized plasma is not enlarged even when the magnetic field exists. We insist
that the thermal instability of the weakly ionized plasma in the magnetic field
can grow up even at the small length scale where the instability under the
assumption of the one fluid plasma can not grow owing to the stabilization by
the magnetic field. (4) The wavelength of the maximum growth rate of the
instability shifts shortward according to the decrement of the growth rate,
because the friction is effective at rather larger scale. Therefore, smaller
structures are expected to appear than those without the ion-neutral friction.Comment: To appear in Ap
Magneto-centrifugally driven winds: comparison of MHD simulations with theory
Stationary magnetohydrodynamic (MHD) outflows from a rotating, conducting
Keplerian accretion disk threaded by B-field are investigated numerically by
time-dependent, axisymmetric (2.5D) simulations using a Godunov-type code. A
large class of stationary magneto-centrifugally driven winds are found where
matter is accelerated from a thermal speed at the disk to much larger velocity,
greater than the fast magnetosonic speed and larger than the escape speed. The
flows are approximately spherical outflows with only small collimation within
the simulation region. Numerical results are shown to coincide with the
theoretical predictions of ideal, axisymmetric MHD to high accuracy.
Investigation of the influence of outer boundary conditions, particularly that
on the toroidal component of magnetic field shows that the commonly used
``free'' boundary condition leads to artificial magnetic forces which can act
to give spurious collimation. New boundary conditions are proposed which do not
generate artificial forces. Artificial results may also arise for cases where
the Mach cones on the outer boundaries are partially directed into the
simulation region.Comment: 19 pages, 18 figures, emulapj.sty is use
Constraints on Stirring and Dissipation of MHD Turbulence in Molecular Clouds
We discuss constraints on the rates of stirring and dissipation of MHD
turbulence in molecular clouds. Recent MHD simulations suggest that turbulence
in clouds decays rapidly, thus providing a significant source of energy input,
particularly if driven at small scales by, for example, bipolar outflows. We
quantify the heating rates by combining the linewidth-size relations, which
describe global cloud properties, with numerically determined dissipation
rates. We argue that, if cloud turbulence is driven on small internal scales,
the CO flux (enhanced by emission from weakly supersonic shocks) will be
much larger than observed; this, in turn, would imply excitation temperatures
significantly above observed values. We reach two conclusions: (1) small-scale
driving by bipolar outflows cannot possibly account for cloud support and yield
long-lived clouds, unless the published MHD dissipation rates are seriously
overestimated; (2) driving on large scales (comparable to the cloud size) is
much more viable from an energetic standpoint, and if the actual net
dissipation rate is only slightly lower than what current MHD simulations
estimate, then the observationally inferred lifetimes and apparent virial
equilibrium of molecular clouds can be explained.Comment: 5 pages, 1 figure. To appear in ApJ (2001 April 10
- âŠ