104 research outputs found
The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice
MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro, underlying the role of miR-221/222 as inducers of proliferation and tumorigenicity
RGS4 negatively modulates Nociceptin/Orphanin FQ opioid receptor signaling: implication for L-Dopa induced dyskinesia
Background and purpose
Regulator of G-protein signal 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gαi/o and Gαq subunits, suppressing GPCR signaling. Here we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signaling and this modulation has relevance for L-Dopa-induced dyskinesia.
Experimental approach
HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and L-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured.
Key results
RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons, and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403 mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by L-Dopa. L-Dopa acutely upregulated RGS4 in the lesioned striatum.
Conclusions and Implications
RGS4 physiologically inhibits NOP receptor signaling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 upregulation occurring during dyskinesia expression
Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-β signaling pathways in cancer
Background: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis. Results: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. Conclusions: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers
Oxaliplatin, 5-fluorouracil/leucovorin and epirubicin as first-line treatment in advanced gastric carcinoma: a phase II study
The association between oxaliplatin and 5-fluorouracil (5-FU) has been extensively reported to improve prognosis of gastric cancer patients. The present study is aimed at evaluating response rate and the toxicity profile of the association with oxaliplatin, 5-FU/lecovorin and epirubicin in gastric cancer patients with locally advanced or metastatic disease. Thirty-six patients have been enrolled and 35 evaluated. The treatment schedule was oxaliplatin (100 mg m−2), 5-FU (400 mg m−2), leucovorin (40 mg m−2) and epirubicin (60 mg m−2) intravenously. administered every 3 weeks for 6 months, for a total of 185 therapy cycles . Response rate and toxicity were assessed according to the international WHO criteria. Every patient received a mean of 5.3 therapy cycles in a day-hospital setting. Sixteen of 35 patients (46%) showed an objective response, two complete response and 14 partial response. Median time to progression was 33 weeks with an overall median survival of 49 weeks. During the study, anaemia grade 3 and neutropenia grade 3 were observed in 9 and 11% of patients respectively. A grade 3 periferic sensorial neuropathy was observed in 6% of patients. No life threatening or cardiac toxicity was recorded. The regimen used showed anticancer activity against gastric carcinoma, a tolerable toxicity profile and excellent patient compliance
- …