174 research outputs found

    Magnetically Stabilized Luminescent Excitations in Hexagonal Boron Nitride

    Full text link
    Magnetically stabilized luminescence is observed in hexagonal boron nitride. The luminescence is induced by absorption of cold neutrons and is in the visible region. In the absence of a magnetic field, the photon emission level is observed to decay over several hundred seconds. A fraction of this luminescence can be suppressed if the temperature is T <~ 0.6 K and the magnetic field is B >~ 1.0 T. Subsequent to irradiation and suppression, luminescence can be induced by an increase in T or lowering of B. Possible explanations include stabilization of triplet states or the localization and stabilization of excitons.Comment: 11 pages, 7 figures, to appear in the Journal of Luminescenc

    New Dihydroxytyrosyl Esters from Dicarboxylic Acids: Synthesis and Evaluation of the Antioxidant Activity In Vitro (ABTS) and in Cell-Cultures (DCF Assay)

    Get PDF
    New dihydroxytyrosyl esters 2a, 2c-2j of dicarboxylic acids were synthesized from methyl orthoformate protected hydroxytyrosol 3 and diacyl chlorides. New compounds were characterized (HRMS, FT-IR, 1H- and 13C-NMR), and tested for antioxidant activity both in vitro (ABTS) and on L6 myoblasts and THP1 leukemic monocytes cell culture by DCF assay. According to the ABTS assay, compounds 2a, 2c-2j showed a TEAC value of antioxidant capacity up to twice that of Trolox. Very high or complete ROS protections were obtained in the cell environment where lipophilicity and rigidity of dicarboxylic structure seem to facilitate the antioxidant effect. MTT assay and proliferation test were used for assessment of cell viability. These compounds can be envisaged as a new class of preservatives for food or cosmetic products

    Magnetic trapping of ultracold neutrons

    Full text link
    Three-dimensional magnetic confinement of neutrons is reported. Neutrons are loaded into an Ioffe-type superconducting magnetic trap through inelastic scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low energy and in the appropriate spin state are confined by the magnetic field until they decay. The electron resulting from neutron decay produces scintillations in the liquid helium bath that results in a pulse of extreme ultraviolet light. This light is frequency downconverted to the visible and detected. Results are presented in which 500 +/- 155 neutrons are magnetically trapped in each loading cycle, consistent with theoretical predictions. The lifetime of the observed signal, 660 s +290/-170 s, is consistent with the neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review

    Mean Field Theory of Josephson Junction Arrays with Charge Frustration

    Full text link
    Using the path integral approach, we provide an explicit derivation of the equation for the phase boundary for quantum Josephson junction arrays with offset charges and non-diagonal capacitance matrix. For the model with nearest neighbor capacitance matrix and uniform offset charge q/2e=1/2q/2e=1/2, we determine, in the low critical temperature expansion, the most relevant contributions to the equation for the phase boundary. We explicitly construct the charge distributions on the lattice corresponding to the lowest energies. We find a reentrant behavior even with a short ranged interaction. A merit of the path integral approach is that it allows to provide an elegant derivation of the Ginzburg-Landau free energy for a general model with charge frustration and non-diagonal capacitance matrix. The partition function factorizes as a product of a topological term, depending only on a set of integers, and a non-topological one, which is explicitly evaluated.Comment: LaTex, 24 pages, 8 figure

    15 years of protest and media technologies scholarship: A sociotechnical timeline

    Get PDF
    This article investigates the relationship between the invention of new media technologies and scholarship concerning protest and political engagement. Building on an innovative approach that moves beyond a systematic literature review, this article contributes to our understanding of scholarship concerning digital communication technologies and how they may have been adopted and shaped protest movements and political engagement. Based on visualizations, we draw a sociotechnical timeline of protest and media technology scholarship within three dimensions: technological development, methods and techniques, and the social phenomena under investigation. The article concludes by identifying major trends in protest and media technologies scholarship over the past 15 years. The sociotechnical timeline enhances our understanding of academic discourse at the intersection of protest and media technologies by highlighting shortcomings and potential for future research

    Bottom-up assembly of metallic germanium

    Get PDF
    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm-3) low-resistivity (10-4Ω ∙ cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory

    “I luoghi di Mercalli”: a travelling exhibition as a tool for scientists to dialogue with the public on volcanoes and earthquakes

    Get PDF
    On March 19, 1914 Giuseppe Mercalli, a seismologist and volcanologist, well-known around the world for the Intensity scale of earthquakes bearing his name, died tragically. A hundred years after, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted a variety of activities and cultural events that will take place under the Patronage of the President of the Italian Republic within a year, the so called “Anno Mercalliano” (the Year of Mercalli). The opening ceremony took place in Naples, Italy, on March 19, 2014, in the Convitto Nazionale Vittorio Emanuele II. A scientific conference was held with the participation of experts from INGV and the university of Milano – Bicocca, and presentations of students. On that day the exhibition entitled “I luoghi di Mercalli” (Mercalli's places) was also inaugurated, at the presence of local authorities. The exhibition, organized by INGV, was realized in collaboration with the high school Vittorio Emanuele II, where Mercalli has been teaching for 19 years, and the Università degli Studi Suor Orsola Benincasa, where he was professor of natural sciences. A biographical and geographical description of the places where Mercalli operated introduces the exhibition, which is organized in sections: - Mercalli educator (he taught at high schools in Reggio Calabria and Naples); - Mercalli volcanologist (Mercalli studied Vesuvius volcanic activity for more than twenty years, he was a scientific witness of the Vesuvius 1906 eruption, and of the eruptions occurred at Vulcano (1888-90) and Stromboli (1891) islands. - Mercalli seismologist (Mercalli Intensity scale definition, based on his experience as witness of catastrophic earthquakes, such as Casamicciola in 1883 and Messina in 1908). Another section deals with the Vesuvius Observatory, directed by Mercalli between 1911 and 1914, and the description of the three active volcanoes of the Campania region (Vesuvius, Campi Flegrei and Ischia island), which have been the subject of studies by the well-known scientist. The exhibition is enriched by documents, manuscripts, photos and field notebooks of Mercalli. It is not intended to be only a celebratory exhibition; rather it is designed as a tool for dissemination of scientific culture and to raise awareness about seismic and volcanic hazards. In the exhibition path a continuous thread between the figure of Mercalli as a researcher and the role of an Earth Science researcher today is highlighted, pointing to the development of scientific knowledge in the past century. The goal is to improve the capability of learning from the disasters occurred in the past to implement preventive actions to safely deal with future events. The exhibition is travelling and will be provided on request to institutions and schools.PublishedMilano, Italia1V. Storia e struttura dei sistemi vulcaniciope

    Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons

    Get PDF
    The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons (UCN) in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200 neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing scintillation light that is detected using photomultiplier tubes. Statistical limitations of the previous apparatus will be alleviated by significant increases in field strength and trap volume resulting in twenty times more trapped neutrons.Comment: 5 pages, 5 figure

    Quantum computation based on d-level cluster states

    Full text link
    The concept of qudit (a d-level system) cluster state is proposed by generalizing the qubit cluster state (Phys. Rev. Lett. \textbf{86}, 910 (2001)) according to the finite dimensional representations of quantum plane algebra. We demonstrate their quantum correlations and prove a theorem which guarantees the availability of the qudit cluster states in quantum computation. We explicitly construct the network to show the universality of the one-way computer based on the defined qudit cluster states and single-qudit measurement. And the corresponding protocol of implementing one-way quantum computer can be suggested with the high dimensional "Ising" model which can be found in many magnetic systems.Comment: Revtex4, 15 pages, 3 eps figure
    corecore