628 research outputs found
CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions
Thermal stability factor (delta) of recording layer was studied in
perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with
various CoFeB recording layer thicknesses and junction sizes. In all series of
p-MTJs with different thicknesses, delta is virtually independent of the
junction sizes of 48-81 nm in diameter. The values of delta increase linearly
with increasing the recording layer thickness. The slope of the linear fit is
explained well by a model based on nucleation type magnetization reversal.Comment: 12 pages, 5 figure
Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors
The effect of disorder on transport and magnetization in ferromagnetic III-V
semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that
Coulomb-induced correlations of the defect positions are crucial for the
transport and magnetic properties of these highly compensated materials. We
employ Monte Carlo simulations to obtain the correlated defect distributions.
Exact diagonalization gives reasonable results for the spectrum of valence-band
holes and the metal-insulator transition only for correlated disorder. Finally,
we show that the mean-field magnetization also depends crucially on defect
correlations.Comment: 4 pages RevTeX4, 5 figures include
Reorientation Transition in Single-Domain (Ga,Mn)As
We demonstrate that the interplay of in-plane biaxial and uniaxial anisotropy
fields in (Ga,Mn)As results in a magnetization reorientation transition and an
anisotropic AC susceptibility which is fully consistent with a simple single
domain model. The uniaxial and biaxial anisotropy constants vary respectively
as the square and fourth power of the spontaneous magnetization across the
whole temperature range up to T_C. The weakening of the anisotropy at the
transition may be of technological importance for applications involving
thermally-assisted magnetization switching.Comment: 4 pages, 4 figure
Hole concentration in a diluted ferromagnetic semiconductor
We consider a mean-field approach to the hole-mediated ferromagnetism in
III-V Mn-based semiconductor compounds to discuss the dependence of the hole
density on that of Mn sites in Ga_{1-x}Mn_xAs. The hole concentration, p, as a
function of the fraction of Mn sites, x, is parametrized in terms of the
product m*J_{pd}^2 (where m* is the hole effective mass and J_{pd} is the
Kondo-like hole/local-moment coupling), and the critical temperature Tc. By
using experimental data for these quantities, we have established the
dependence of the hole concentration with x, which can be associated with the
occurrence of a reentrant metal-insulator transition taking place in the hole
gas. We also calculate the dependence of the Mn magnetization with x, for
different temperatures (T), and found that as T increases, the width of the
composition-dependent magnetization decreases drammatically, and that the
magnetization maxima also decreases, indicating the need for quality-control of
Mn-doping composition in diluted magnetic semiconductor devices.Comment: 4 pages, 3 figures, RevTeX 3; Fig. 1 changed, new references adde
Hydrogen patterning of Ga1-xMnxAs for planar spintronics
We demonstrate two patterning techniques based on hydrogen passivation of
Ga1-xMnxAs to produce isolated ferromagnetically active regions embedded
uniformly in a paramagnetic, insulating host. The first method consists of
selective hydrogenation of Ga1-xMnxAs by lithographic masking. Magnetotransport
measurements of Hall-bars made in this manner display the characteristic
properties of the hole-mediated ferromagnetic phase, which result from good
pattern isolation. Arrays of Ga1-xMnxAs dots as small as 250 nm across have
been realized by this process. The second process consists of blanket
hydrogenation of Ga1-xMnxAs followed by local reactivation using confined
low-power pulsed-laser annealing. Conductance imaging reveals local electrical
reactivation of micrometer-sized regions that accompanies the restoration of
ferromagnetism. The spatial resolution achievable with this method can
potentially reach <100 nm by employing near-field laser processing. The high
spatial resolution attainable by hydrogenation patterning enables the
development of systems with novel functionalities such as lateral
spin-injection as well as the exploration of magnetization dynamics in
individual and coupled structures made from this novel class of semiconductors.Comment: ICDS-24, July 2007. 8 pages with 4 figure
Positional Disorder, Spin-Orbit Coupling and Frustration in GaMnAs
We study the magnetic properties of metallic GaMnAs. We calculate the
effective RKKY interaction between Mn spins using several realistic models for
the valence band structure of GaAs. We also study the effect of positional
disorder of the Mn on the magnetic properties. We find that the interaction
between two Mn spins is anisotropic due to spin-orbit coupling within both the
so-called spherical approximation and in the more realistic six band model. The
spherical approximation strongly overestimates this anistropy, especially for
short distances between Mn ions. Using the obtained effective Hamiltonian we
carry out Monte Carlo simulations of finite and zero temperature magnetization
and find that, due to orientational frustration of the spins, non-collinear
states appear in both valence band approximations for disordered, uncorrelated
Mn impurities in the small concentration regime. Introducing correlations among
the substitutional Mn positions or increasing the Mn concentration leads to an
increase in the remnant magnetization at zero temperature and an almost fully
polarized ferromagnetic state.Comment: 17 Pages, 13 Figure
Disorder, spin-orbit, and interaction effects in dilute
We derive an effective Hamiltonian for in
the dilute limit, where can be described in
terms of spin polarons hopping between the {\rm Mn} sites and coupled
to the local {\rm Mn} spins. We determine the parameters of our model from
microscopic calculations using both a variational method and an exact
diagonalization within the so-called spherical approximation. Our approach
treats the extremely large Coulomb interaction in a non-perturbative way, and
captures the effects of strong spin-orbit coupling and Mn positional disorder.
We study the effective Hamiltonian in a mean field and variational calculation,
including the effects of interactions between the holes at both zero and finite
temperature. We study the resulting magnetic properties, such as the
magnetization and spin disorder manifest in the generically non-collinear
magnetic state. We find a well formed impurity band fairly well separated from
the valence band up to for which finite size
scaling studies of the participation ratios indicate a localization transition,
even in the presence of strong on-site interactions, where is the fraction of magnetically active Mn. We study the
localization transition as a function of hole concentration, Mn positional
disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure
Effect of annealing on carrier density and Curie temperature in epitaxial (Ga,Mn)As thin films
We report a clear correspondence between changes in the Curie temperature and
carrier density upon annealing in epitaxially grown (Ga,Mn)As layers with
thicknesses in the range between 5 nm and 20 nm. The changes are dependent on
the layer thickness, indicating that the (Ga,Mn)As - GaAs interface has
importance for the physical properties of the (Ga,Mn)As layer. The
magnetoresistance shows additional features when compared to thick (Ga,Mn)As
layers, that are at present of unknown origin.Comment: 9 pages, 3 figure
Quantitative Study of Magnetotransport through a (Ga,Mn)As Single Ferromagnetic Domain
We have performed a systematic investigation of the longitudinal and
transverse magnetoresistance of a single ferromagnetic domain in (Ga,Mn)As. We
find that, by taking into account the intrinsic dependence of the resistivity
on the magnetic induction, an excellent agreement between experimental results
and theoretical expectations is obtained. Our findings provide a detailed and
fully quantitative validation of the theoretical description of
magnetotransport through a single ferromagnetic domain. Our analysis
furthermore indicates the relevance of magneto-impurity scattering as a
mechanism for magnetoresistance in (Ga,Mn)As.Comment: 5 pages, 4 figures; v2: missing references included, figures
recompressed to improve readabilit
- …