628 research outputs found

    CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions

    Full text link
    Thermal stability factor (delta) of recording layer was studied in perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with various CoFeB recording layer thicknesses and junction sizes. In all series of p-MTJs with different thicknesses, delta is virtually independent of the junction sizes of 48-81 nm in diameter. The values of delta increase linearly with increasing the recording layer thickness. The slope of the linear fit is explained well by a model based on nucleation type magnetization reversal.Comment: 12 pages, 5 figure

    Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors

    Full text link
    The effect of disorder on transport and magnetization in ferromagnetic III-V semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that Coulomb-induced correlations of the defect positions are crucial for the transport and magnetic properties of these highly compensated materials. We employ Monte Carlo simulations to obtain the correlated defect distributions. Exact diagonalization gives reasonable results for the spectrum of valence-band holes and the metal-insulator transition only for correlated disorder. Finally, we show that the mean-field magnetization also depends crucially on defect correlations.Comment: 4 pages RevTeX4, 5 figures include

    Reorientation Transition in Single-Domain (Ga,Mn)As

    Full text link
    We demonstrate that the interplay of in-plane biaxial and uniaxial anisotropy fields in (Ga,Mn)As results in a magnetization reorientation transition and an anisotropic AC susceptibility which is fully consistent with a simple single domain model. The uniaxial and biaxial anisotropy constants vary respectively as the square and fourth power of the spontaneous magnetization across the whole temperature range up to T_C. The weakening of the anisotropy at the transition may be of technological importance for applications involving thermally-assisted magnetization switching.Comment: 4 pages, 4 figure

    Hole concentration in a diluted ferromagnetic semiconductor

    Full text link
    We consider a mean-field approach to the hole-mediated ferromagnetism in III-V Mn-based semiconductor compounds to discuss the dependence of the hole density on that of Mn sites in Ga_{1-x}Mn_xAs. The hole concentration, p, as a function of the fraction of Mn sites, x, is parametrized in terms of the product m*J_{pd}^2 (where m* is the hole effective mass and J_{pd} is the Kondo-like hole/local-moment coupling), and the critical temperature Tc. By using experimental data for these quantities, we have established the dependence of the hole concentration with x, which can be associated with the occurrence of a reentrant metal-insulator transition taking place in the hole gas. We also calculate the dependence of the Mn magnetization with x, for different temperatures (T), and found that as T increases, the width of the composition-dependent magnetization decreases drammatically, and that the magnetization maxima also decreases, indicating the need for quality-control of Mn-doping composition in diluted magnetic semiconductor devices.Comment: 4 pages, 3 figures, RevTeX 3; Fig. 1 changed, new references adde

    Hydrogen patterning of Ga1-xMnxAs for planar spintronics

    Full text link
    We demonstrate two patterning techniques based on hydrogen passivation of Ga1-xMnxAs to produce isolated ferromagnetically active regions embedded uniformly in a paramagnetic, insulating host. The first method consists of selective hydrogenation of Ga1-xMnxAs by lithographic masking. Magnetotransport measurements of Hall-bars made in this manner display the characteristic properties of the hole-mediated ferromagnetic phase, which result from good pattern isolation. Arrays of Ga1-xMnxAs dots as small as 250 nm across have been realized by this process. The second process consists of blanket hydrogenation of Ga1-xMnxAs followed by local reactivation using confined low-power pulsed-laser annealing. Conductance imaging reveals local electrical reactivation of micrometer-sized regions that accompanies the restoration of ferromagnetism. The spatial resolution achievable with this method can potentially reach <100 nm by employing near-field laser processing. The high spatial resolution attainable by hydrogenation patterning enables the development of systems with novel functionalities such as lateral spin-injection as well as the exploration of magnetization dynamics in individual and coupled structures made from this novel class of semiconductors.Comment: ICDS-24, July 2007. 8 pages with 4 figure

    Positional Disorder, Spin-Orbit Coupling and Frustration in GaMnAs

    Full text link
    We study the magnetic properties of metallic GaMnAs. We calculate the effective RKKY interaction between Mn spins using several realistic models for the valence band structure of GaAs. We also study the effect of positional disorder of the Mn on the magnetic properties. We find that the interaction between two Mn spins is anisotropic due to spin-orbit coupling within both the so-called spherical approximation and in the more realistic six band model. The spherical approximation strongly overestimates this anistropy, especially for short distances between Mn ions. Using the obtained effective Hamiltonian we carry out Monte Carlo simulations of finite and zero temperature magnetization and find that, due to orientational frustration of the spins, non-collinear states appear in both valence band approximations for disordered, uncorrelated Mn impurities in the small concentration regime. Introducing correlations among the substitutional Mn positions or increasing the Mn concentration leads to an increase in the remnant magnetization at zero temperature and an almost fully polarized ferromagnetic state.Comment: 17 Pages, 13 Figure

    Disorder, spin-orbit, and interaction effects in dilute Ga1xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x{\rm As}

    Full text link
    We derive an effective Hamiltonian for Ga1xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} in the dilute limit, where Ga1xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} can be described in terms of spin F=3/2F=3/2 polarons hopping between the {\rm Mn} sites and coupled to the local {\rm Mn} spins. We determine the parameters of our model from microscopic calculations using both a variational method and an exact diagonalization within the so-called spherical approximation. Our approach treats the extremely large Coulomb interaction in a non-perturbative way, and captures the effects of strong spin-orbit coupling and Mn positional disorder. We study the effective Hamiltonian in a mean field and variational calculation, including the effects of interactions between the holes at both zero and finite temperature. We study the resulting magnetic properties, such as the magnetization and spin disorder manifest in the generically non-collinear magnetic state. We find a well formed impurity band fairly well separated from the valence band up to xactive0.015x_{\rm active} \lesssim 0.015 for which finite size scaling studies of the participation ratios indicate a localization transition, even in the presence of strong on-site interactions, where xactive<xnomx_{\rm active}<x_{\rm nom} is the fraction of magnetically active Mn. We study the localization transition as a function of hole concentration, Mn positional disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure

    Effect of annealing on carrier density and Curie temperature in epitaxial (Ga,Mn)As thin films

    Full text link
    We report a clear correspondence between changes in the Curie temperature and carrier density upon annealing in epitaxially grown (Ga,Mn)As layers with thicknesses in the range between 5 nm and 20 nm. The changes are dependent on the layer thickness, indicating that the (Ga,Mn)As - GaAs interface has importance for the physical properties of the (Ga,Mn)As layer. The magnetoresistance shows additional features when compared to thick (Ga,Mn)As layers, that are at present of unknown origin.Comment: 9 pages, 3 figure

    Quantitative Study of Magnetotransport through a (Ga,Mn)As Single Ferromagnetic Domain

    Full text link
    We have performed a systematic investigation of the longitudinal and transverse magnetoresistance of a single ferromagnetic domain in (Ga,Mn)As. We find that, by taking into account the intrinsic dependence of the resistivity on the magnetic induction, an excellent agreement between experimental results and theoretical expectations is obtained. Our findings provide a detailed and fully quantitative validation of the theoretical description of magnetotransport through a single ferromagnetic domain. Our analysis furthermore indicates the relevance of magneto-impurity scattering as a mechanism for magnetoresistance in (Ga,Mn)As.Comment: 5 pages, 4 figures; v2: missing references included, figures recompressed to improve readabilit
    corecore