17 research outputs found

    Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility

    No full text
    BioHEAs, specifically designed high entropy alloy (HEA) systems for biomedical applications, represent a new era for biometals. However, recent challenges are (1) the poor shape customizability, and (2) the inevitable severe segregation due to the intrinsic fact that HEA is an ultra-multicomponent alloy system. To achieve shape customization and suppression of elemental segregation simultaneously, we used an extremely high cooling rate (similar to 10(7) K/s) of the selective laser melting (SLM) process. We, for the first time, developed pre-alloyed Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 BioHEA powders and SLM-built parts with low porosity, customizable shape, excellent yield stress, and good biocompatibility. The SLM-built specimens showed drastically suppressed elemental segregation compared to the cast counterpart, representing realization of a super-solid solution. As a result, the 0.2% proof stress reached 1690 +/- 78 MPa, which is significantly higher than that of cast Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 (1140 MPa). The SLM-built Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 BioHEA is promising as a next-generation metallic material for biomedical applications. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd.11Nsciescopu

    A single exercise session improves side-effects of chemotherapy in women with breast cancer : an observational study

    No full text
    Background: To measure changes in four common chemotherapy related side-effects (low energy, stress, nausea and pain) immediately after a single exercise session within the first week after treatment. Methods: Thirty-eight patients with chemotherapy-treated breast cancer, participating in a multi-centre randomised controlled study, the Physical Training and Cancer study (Phys-Can) were included in this sub-study. The Phys-Can intervention included endurance and resistance training. Before and after a single training session (endurance or resistance) within the first week of chemotherapy, energy and stress were measured with the Stress-Energy Questionnaire during Leisure Time, and nausea and pain were assessed using a Visual Analog Scale 0-10. Paired t-tests were performed to analyse the changes, and linear regression was used to analyse associations with potential predictors. Results: Thirty-eight participants performed 26 endurance training sessions and 31 resistance training sessions in the first week after chemotherapy. Energy and nausea improved significantly after endurance training, and energy, stress and nausea improved significantly after resistance training. Energy increased (p = 0.03 and 0.001) and nausea decreased (p = 0.006 and 0.034) immediately after a single session of endurance or resistance training, and stress decreased (p = 0.014) after resistance exercise. Conclusions: Both endurance and resistance training were followed by an immediate improvement of common chemotherapy-related side-effects in patients with breast cancer. Patients should be encouraged to exercise even if they suffer from fatigue or nausea during chemotherapy

    Psychosocial benefits of workplace physical exercise: cluster randomized controlled trial

    No full text
    Abstract Background While benefits of workplace physical exercise on physical health is well known, little is known about the psychosocial effects of such initiatives. This study evaluates the effect of workplace versus home-based physical exercise on psychosocial factors among healthcare workers. Methods A total of 200 female healthcare workers (Age: 42.0, BMI: 24.1) from 18 departments at three hospitals were cluster-randomized to 10 weeks of: 1) home-based physical exercise (HOME) performed alone during leisure time for 10 min 5 days per week or 2) workplace physical exercise (WORK) performed in groups during working hours for 10 min 5 days per week and up to 5 group-based coaching sessions on motivation for regular physical exercise. Vitality and mental health (SF-36, scale 0–100), psychosocial work environment (COPSOQ, scale 0–100), work- and leisure disability (DASH, 0–100), control- (Bournemouth, scale 0–10) and concern about pain (Pain Catastrophizing Scale, scale 0–10) were assessed at baseline and at 10-week follow-up. Results Vitality as well as control and concern about pain improved more following WORK than HOME (all p < 0.05) in spite of increased work pace (p < 0.05). Work- and leisure disability, emotional demands, influence at work, sense of community, social support and mental health remained unchanged. Between-group differences at follow-up (WORK vs. HOME) were 7 [95% confidence interval (95% CI) 3 to 10] for vitality, −0.8 [95% CI -1.3 to −0.3] for control of pain and −0.9 [95% CI -1.4 to −0.5] for concern about pain, respectively. Conclusions Performing physical exercise together with colleagues during working hours was more effective than home-based exercise in improving vitality and concern and control of pain among healthcare workers. These benefits occurred in spite of increased work pace. Trial registration NCT01921764 at ClinicalTrials.gov . Registered 10 August 2013

    Experimental phasing opportunities for macromolecular crystallography at very long wavelengths

    No full text
    Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing
    corecore