848 research outputs found

    Are the electromagnetic fields a danger to the public health?

    Get PDF
    Electromagnetic fields of all frequencies represent one of the most common and fastest growing environmental influences, about which anxiety and speculation are spreading. All populations are now exposed to varying degrees of EMF and the levels will continue to increase as technology advances. As part of its activity to protect public health and in response to public concern, the World Health Organization (WHO) and other international organizations and scientists all over the world established increased politics and studies for analyzing the effects of EMF in the people’s lives. The International EMF Project in 1996 established, according to the scientific evidence of possible health effects of EMF in the frequency range from 0 to 300 GHz

    Window-based Streaming Graph Partitioning Algorithm

    Full text link
    In the recent years, the scale of graph datasets has increased to such a degree that a single machine is not capable of efficiently processing large graphs. Thereby, efficient graph partitioning is necessary for those large graph applications. Traditional graph partitioning generally loads the whole graph data into the memory before performing partitioning; this is not only a time consuming task but it also creates memory bottlenecks. These issues of memory limitation and enormous time complexity can be resolved using stream-based graph partitioning. A streaming graph partitioning algorithm reads vertices once and assigns that vertex to a partition accordingly. This is also called an one-pass algorithm. This paper proposes an efficient window-based streaming graph partitioning algorithm called WStream. The WStream algorithm is an edge-cut partitioning algorithm, which distributes a vertex among the partitions. Our results suggest that the WStream algorithm is able to partition large graph data efficiently while keeping the load balanced across different partitions, and communication to a minimum. Evaluation results with real workloads also prove the effectiveness of our proposed algorithm, and it achieves a significant reduction in load imbalance and edge-cut with different ranges of dataset

    STUDY ON THE IDENTIFICATION OF HERBICIDES WITH HIGH SELECTIVITY TO ENSURE CULTURAL HYGIENE IN GRAIN SORGHUM CROPS

    Get PDF
    The integrated management of weeds uses a combination of biological, cultural, mechanical and chemical measures to combat the weeds in order to maximize the economic profits. Integrated management strategies for cultural hygiene are not sufficiently developed for selective herbicides in order to combat weeds for Sorghum bicolor (L.). The efficacy of the applied herbicides was tested using the Abbott’s formula, and the most effective in controlling weeds in the grain sorghum culture for the Caracal Plain area was found to be the Trek P 334 SE herbicide, with a value of 97.21%, followed by Gardoprim Plus with a calculated coefficient of 95.33% and the herbicide Wing P whose value was 94.15%. The lowest coefficient was recorded for the Casper herbicide, 73.28%. The level of productions made this year in the herbicide experiment using the Alizee hybrid range between 3092 kg/ha at the Control variant and 8150 kg/ha when the Trek P 334 SE herbicide was applied. The increases recorded in all variants with herbicides, regardless of the active substance contained, have achieved very significant increases in production in comparison with the Control variant

    Weaving the nest: extracellular matrix roles in pre-metastatic niche formation

    Get PDF
    The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the “soil” of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ’s extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation

    Higher order differentiation over finite fields with applications to generalising the cube attack

    Get PDF
    Higher order differentiation was introduced in a cryptographic context by Lai. Several attacks can be viewed in the context of higher order differentiations, amongst them the cube attack of Dinur and Shamir and the AIDA attack of Vielhaber. All of the above have been developed for the binary case. We examine differentiation in larger fields, starting with the field GF(p) of integers modulo a prime p, and apply these techniques to generalising the cube attack to GF(p). The crucial difference is that now the degree in each variable can be higher than one, and our proposed attack will differentiate several times with respect to each variable (unlike the classical cube attack and its larger field version described by Dinur and Shamir, both of which differentiate at most once with respect to each variable). Connections to the Moebius/Reed Muller Transform over GF(p) are also examined. Finally we describe differentiation over finite fields GF(ps) with ps elements and show that it can be reduced to differentiation over GF(p), so a cube attack over GF(ps) would be equivalent to cube attacks over GF(p)

    Propagation of thermohaline anomalies and their predictive potential along the Atlantic water pathway

    Get PDF
    Abstract We assess to what extent seven state-of-the-art dynamical prediction systems can retrospectively predict winter sea surface temperature (SST) in the subpolar North Atlantic and the Nordic seas in the period 1970–2005. We focus on the region where warm water flows poleward (i.e., the Atlantic water pathway to the Arctic) and on interannual-to-decadal time scales. Observational studies demonstrate predictability several years in advance in this region, but we find that SST skill is low with significant skill only at a lead time of 1–2 years. To better understand why the prediction systems have predictive skill or lack thereof, we assess the skill of the systems to reproduce a spatiotemporal SST pattern based on observations. The physical mechanism underlying this pattern is a propagation of oceanic anomalies from low to high latitudes along the major currents, the North Atlantic Current and the Norwegian Atlantic Current. We find that the prediction systems have difficulties in reproducing this pattern. To identify whether the misrepresentation is due to incorrect model physics, we assess the respective uninitialized historical simulations. These simulations also tend to misrepresent the spatiotemporal SST pattern, indicating that the physical mechanism is not properly simulated. However, the representation of the pattern is slightly degraded in the predictions compared to historical runs, which could be a result of initialization shocks and forecast drift effects. Ways to enhance predictions could include improved initialization and better simulation of poleward circulation of anomalies. This might require model resolutions in which flow over complex bathymetry and the physics of mesoscale ocean eddies and their interactions with the atmosphere are resolved. Significance Statement In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models.Acknowledgments. The research leading to these results has received funding from the Blue-Action Project (European Union’s Horizon 2020 research and innovation program, Grant 727852), the Trond Mohn Foundation with the project Bjerknes Climate Prediction Unit (BCPU, Grant BFS2018TMT01), the NordForsk under the Nordic Centre of Excellence (ARCPATH, 76654), and from the Bjerknes Centre with the project SKD MEDEVAC. The research leading to these results has also received funding from the German Federal Ministry of Education and Research (BMBF) through the JPI Climate/JPI Oceans NextG-Climate Science-ROADMAP (FKZ: 01LP2002A; DM and Norwegian Grant 316618/JPIC/JPIO-04; HRL and NK and ANR-19-JPOC-003; JM). PO was funded by the Spanish Ministry for the Economy, Industry and Competitiveness through the grant RYC-2017-22772. SY also receives financial support from the Danish National Center for Climate Research (NCKF). The National Center for Atmospheric Research is a major facility sponsored by the U.S. National Science Foundation (NSF) under Cooperative Agreement 1852977. EM is supported by the U.S. NSF Office of Polar Programs Grant 1737377. The prediction simulations using EC-EARTH anomaly initialization system were performed by SMHI on resources provided by the Swedish National Infrastructure for Computing (SNIC).Peer Reviewed"Article signat per 16 autors/es: H. R. Langehaug, P. Ortega, F. Counillon, D. Matei, E. Maroon, N. Keenlyside, J. Mignot, Y. Wang, D. Swingedouw, I. Bethke, S. Yang, G. Danabasoglu, A. Bellucci, P. Ruggieri, D. Nicolì, and M. Årthun"Postprint (published version

    Molybdenum targets for production of 99mTc by a medical cyclotron

    Get PDF
    Introduction Alternative methods for producing the medical imaging isotope 99mTc are actively being developed around the world in anticipation of the imminent shutdown of the National Research Universal (NRU) reactor in Chalk River, Ontario, Canada and the high flux reactor (HFR) in Petten, Holland that together currently produce up to 80 % of the world’s supply through fission. The most promising alternative methods involve accelerators that focus Bremsstrahlung radiation or protons on metallic targets comprised of 100Mo and a supporting material used to conduct heat away during irradiation. As an example, the reaction 100Mo(p,2n)99mTc provides a direct route that can be incorporated into routine production in regional nuclear medicine centers that possess medical cyclotrons for production of other isotopes, such as those used for Positron Emission Tomography (PET). The targets used to produce 99mTc are subject to a number of operational constraints. They must withstand the temperatures generated by the irradiation and be fashioned to accommodate temperature gradients from in situ cooling. The targets must be resilient, which means they cannot disintegrate during irradiation or post processing, because of the radioactive nature of the products. Yet, the targets must be easily post-processed to separate the 99mTc. In addition, the method used to manufacture the targets must not be wasteful of the 100Mo, because of its cost (~$2/mg). Any manufacturing process should be able to function remotely in a shielded space to accommodate the possibility of radioactive recycled target feedstock. There are a number of methods that have been proposed for large-scale target manufacturing including electrophoretic deposition, pressing and sinter-ing, electroplating and carburization [1]. How to develop these methods for routine production is an active business [2,3]. From the industrial perspective, plasma spraying showed promising results initially [4], but the process became very expensive requiring customized equipment in order to reduce losses because of overspray,which also required a large inventory of expen-sive feedstock. In this paper we report the ex-perimental validation of an industrial process for production of targets comprising a Mo layer and a copper support. Materials and methods Target Design Targets have been manufactured for irradiation at 15 MeV. Two targets are shown in FIG. 1: one as-manufactured and another after irradiation; no visible changes were observed following irradiation. The supporting circular copper (C101) disks have diameters of 24 mm and thickness of 1.6 mm. The molybdenum in the center of the target is fully dense with thickness 230 μm determined from SEM cross-sections.Targets have also been manufactured for irradi-ation in a general-purpose target holder designed to be attached to all makes of cyclotrons found in regional nuclear medicine centers. The elliptical targets were designed for high-volume production of 99mTc with 15 MeV protons at currents of 400 µA with 15% collimation [4]. The elliptical shape reduces the heat flux associated with high current sources. The cooling channels on the back of the target are designed to with-stand the high temperature generated during Irradiation. A thermal simulation of expected temperatures during irradiation is shown in FIG. 3. The center of the target is expected to reach 260 oC during irradiation. The elliptical targets were formed from a 27 mm C101 copper plate with width 22 mm and length 55 mm. The molybdenum in the center of the target is fully dense with thickness 60 m de-termined from SEM cross-sections. FIG. 4 shows the molybdenum deposition in the center of the target in a form of an ellipse (38×10 mm). Results and Conclusions Circular targets have been produced and suc-cessfully irradiated for up to 5 h with a proton beam with energy 15 MeV and current 50 µA. (FIG. 1). The targets were resilient. Before irradi-ation the targets were subjected to mechanical shock tests and thermal gradients with no ob-servable effect. After irradiation there was no indication of any degradation. The manufacturing process produced 20 consistently reproducible targets within an hour with a molybdenum loss of less than 2 %. After irradiation the targets were chemically processed and the products characterized by Ge-HP gamma spectrometry. Only Tc isotopes were found. No other contami-nants were identified after processing. The de-tails of the separation and purification are de-scribed elsewhere [5]. Circular targets suitable for low-volume produc-tion of 99mTc have been manufactured and test-ed. The targets have been shown to meet the required operation constraints: the targets are resilient withstanding mechanical shock and irradiation conditions; they are readily produced with minimal losses; and post-processing after irradiation for 5 h has been shown to produce 99mTc. Elliptical targets suitable for high-volume pro-duction of 99mTc with high power cyclotrons have been manufactured (FIG. 4). Like the circular targets, the elliptical targets are readily pro-duced with minimal losses and are able to with-stand mechanical shock and thermal gradients; however, they have yet to be irradiated

    Does addition of craving management tools in a stop smoking app improve quit rates among adult smokers? Results from BupaQuit pragmatic pilot randomised controlled trial

    Get PDF
    Objectives: Delivery of craving management tools via smartphone applications (apps) may improve smoking cessation rates, but research on such programmes remains limited, especially in real-world settings. This study evaluated the effectiveness of adding craving management tools in a cessation app (BupaQuit). Methods: The study was a two-arm pragmatic pilot parallel randomised controlled trial, comparing a fully-automated BupaQuit app with craving management tool with a control app version without craving management tool. A total of 425 adult UK-based daily smokers were enrolled through open online recruitment (February 2015–March 2016), with no researcher involvement, and individually randomised within the app to the intervention (n = 208) or control (n = 217). The primary outcome was self-reported 14-day continuous abstinence assessed at 4-week follow-up. Secondary outcomes included 6-month point-prevalence and sustained abstinence, and app usage. The primary outcome was assessed with Fisher's exact test using intent to treat with those lost to follow-up counted as smoking. Participants were not reimbursed. Results: Re-contact rates were 50.4% at 4 weeks and 40.2% at 6 months. There was no significant difference between intervention and control arms on the primary outcome (13.5% vs 15.7%; p = 0.58; relative risk = 0.86, 95% confidence interval = 0.54–1.36) or secondary cessation outcomes (6-month point prevalence: 14.4% vs 17.1%, p = 0.51; relative risk = 0.85, 95% confidence interval = 0.54–1.32; 6-month sustained: 11.1% vs 13.4%, p = 0.55; relative risk = 0.83, 95% confidence interval = 0.50–1.38). Bayes factors supported the null hypothesis (B[0, 0, 1.0986] = 0.20). Usage was similar across the conditions (mean/median logins: 9.6/4 vs 10.5/5; time spent: 401.8/202 s vs 325.8/209 s). Conclusions: The addition of craving management tools did not affect cessation, and the limited engagement with the app may have contributed to this
    corecore