5 research outputs found

    Regulation of Glucose Homeostasis by KSR1 and MARK2

    Get PDF
    Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism

    Insulin Stimulates Interleukin-6 Expression and Release in LS14 Human Adipocytes through Multiple Signaling Pathways

    No full text
    IL-6 is an important cytokine that regulates both immune and metabolic functions. Within adipose tissue, preadipocytes produce significant amounts of IL-6, but little is known about the factors or mechanisms that regulate IL-6 production in these cells. Using LS14, a newly developed human adipocyte cell line, our objective was to determine the mechanisms by which insulin stimulates IL-6 production and release in preadipocytes. Insulin increased IL-6 gene expression and secretion in a time- and dose-dependent manner. Insulin decreased cyclic AMP (cAMP) but increased cyclic GMP (cGMP) levels, and IL-6 expression/release was stimulated by a cGMP analog. The stimulatory effect of insulin and cGMP was abrogated by a specific inhibitor of protein kinase G (cyclic GMP-dependent protein kinase). Both insulin and cGMP rapidly induced phosphorylation of cAMP response element binding protein. Insulin also activated the MAPK signaling pathway, and its blockade prevented the insulin-stimulated increases in IL-6 cell content and release, but not IL-6 gene expression. Although inhibition of the proteosome increased IL-6 cell content and release, proteosome activity was unaffected by insulin. These data suggest that the stimulatory effects of insulin on IL-6 release involve several interrelated components: transcription, intracellular releasable pool, and secretion, which are differentially regulated and, thus, determine the size of the releasable pool of IL-6. Insulin-induced IL-6 gene expression is mediated by cGMP/cyclic GMP-dependent protein kinase/cAMP response element binding protein, whereas MAPK is involved in the insulin-stimulated IL-6 synthesis/release

    Adipose tissue browning and metabolic health

    No full text
    corecore