237 research outputs found
State-insensitive trapping of Rb atoms: linearly versus circularly polarized lights
We study the cancellation of differential ac Stark shifts in the 5s and 5p
states of rubidium atom using the linearly and circularly polarized lights by
calculating their dynamic polarizabilities. Matrix elements were calculated
using a relativistic coupled-cluster method at the single, double and important
valence triple excitations approximation including all possible non-linear
correlation terms. Some of the important matrix elements were further optimized
using the experimental results available for the lifetimes and static
polarizabilities of atomic states. "Magic wavelengths" are determined from the
differential Stark shifts and results for the linearly polarized light are
compared with the previously available results. Possible scope of facilitating
state-insensitive optical trapping schemes using the magic wavelengths for
circularly polarized light are discussed. Using the optimized matrix elements,
the lifetimes of the 4d and 6s states of this atom are ameliorated.Comment: 13 pages, 13 tables and 4 figure
Associations between coordination and wearable sensor variables vary by recording context but not assessment type
Motor coordination is an important driver of development and improved coordination assessments could facilitate better screening, diagnosis, and intervention for children at risk of developmental disorders. Wearable sensors could provide data that enhance the characterization of coordination and the clinical utility of that data may vary depending on how sensor variables from different recording contexts relate to coordination. We used wearable sensors at the wrists to capture upper-limb movement in 85 children aged 6-12. Sensor variables were extracted from two recording contexts
Infants later diagnosed with autism have lower canonical babbling ratios in the first year of life
BACKGROUND: Canonical babbling-producing syllables with a mature consonant, full vowel, and smooth transition-is an important developmental milestone that typically occurs in the first year of life. Some studies indicate delayed or reduced canonical babbling in infants at high familial likelihood for autism spectrum disorder (ASD) or who later receive an ASD diagnosis, but evidence is mixed. More refined characterization of babbling in the first year of life in infants with high likelihood for ASD is needed.
METHODS: Vocalizations produced at 6 and 12 months by infants (nâ=â267) taking part in a longitudinal study were coded for canonical and non-canonical syllables. Infants were categorized as low familial likelihood (LL), high familial likelihood diagnosed with ASD at 24 months (HL-ASD) or not diagnosed (HL-Neg). Language delay was assessed based on 24-month expressive and receptive language scores. Canonical babble ratio (CBR) was calculated by dividing the number of canonical syllables by the number of total syllables. Generalized linear (mixed) models were used to assess the relationship between group membership and CBR, controlling for site, sex, and maternal education. Logistic regression was used to assess whether canonical babbling ratios at 6 and 12 months predict 24-month diagnostic outcome.
RESULTS: No diagnostic group differences in CBR were detected at 6 months, but HL-ASD infants produced significantly lower CBR than both the HL-Neg and LL groups at 12 months. HL-Neg infants with language delay also showed reduced CBR at 12 months. Neither 6- nor 12-month CBR was significant predictors of 24-month diagnostic outcome (ASD versus no ASD) in logistic regression.
LIMITATIONS: Small numbers of vocalizations produced by infants at 6 months may limit the reliability of CBR estimates. It is not known if results generalize to infants who are not at high familial likelihood, or infants from more diverse racial and socioeconomic backgrounds.
CONCLUSIONS: Lower canonical babbling ratios are apparent by the end of the first year of life in ASD regardless of later language delay, but are also observed for infants with later language delay without ASD. Canonical babbling may lack specificity as an early marker when used on its own
Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential
The first three electronically excited states in the alkaline-earth-metal
atoms magnesium, calcium, and strontium comprise the (nsnp) triplet P^o_J
(J=0,1,2) fine-structure manifold. All three states are metastable and are of
interest for optical atomic clocks as well as for cold-collision physics. An
efficient technique--based on a physically motivated potential that models the
presence of the ionic core--is employed to solve the Schroedinger equation for
the two-electron valence shell. In this way, radiative lifetimes, laser-induced
clock shifts, and long-range interaction parameters are calculated for
metastable Mg, Ca, and Sr.Comment: 13 pages, 9 table
Self-Energy Correction to the Two-Photon Decay Width in Hydrogenlike Atoms
We investigate the gauge invariance of the leading logarithmic radiative
correction to the two-photon decay width in hydrogenlike atoms. It is shown
that an effective treatment of the correction using a Lamb-shift "potential"
leads to equivalent results in both the length as well as the velocity gauges
provided all relevant correction terms are taken into account. Specifically,
the relevant radiative corrections are related to the energies that enter into
the propagator denominators, to the Hamiltonian, to the wave functions, and to
the energy conservation condition that holds between the two photons; the form
of all of these effects is different in the two gauges, but the final result is
shown to be gauge invariant, as it should be. Although the actual calculation
only involves integrations over nonrelativistic hydrogenic Green functions, the
derivation of the leading logarithmic correction can be regarded as slightly
more complex than that of other typical logarithmic terms. The dominant
radiative correction to the 2S two-photon decay width is found to be -2.020536
(alpha/pi) (Zalpha)^2 ln[(Zalpha)^-2] in units of the leading nonrelativistic
expression. This result is in agreement with a length-gauge calculation [S. G.
Karshenboim and V. G. Ivanov, e-print physics/9702027], where the coefficient
was given as -2.025(1).Comment: 9 pages, RevTe
Nonresonant effects in one- and two-photon transitions
We investigate nonresonant contributions to resonant Rayleigh scattering
cross sections of atoms. The problematic nonresonant contributions set a limit
to the accuracy to which atomic spectra determine energy levels. We discuss the
off-resonance effects in one-photon transitions. We also show that
off-resonance contributions for the 1S-2S two-photon transition in atomic
hydrogen are negligible at current and projected levels of experimental
accuracy. The possibility of a differential measurement for the detection of
off-resonance effects in one-photon transitions in atomic hydrogen is
discussed.Comment: 13 pages, LaTeX, 3 figures; submitted to Can. J. Phys. (Oct 2001);
discussion of one-photon transitions enhance
Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions
Recent progress in the study of the photon emission from highly-charged heavy
ions is reviewed. These investigations show that high- ions provide a unique
tool for improving the understanding of the electron-electron and
electron-photon interaction in the presence of strong fields. Apart from the
bound-state transitions, which are accurately described in the framework of
Quantum Electrodynamics, much information has been obtained also from the
radiative capture of (quasi-) free electrons by high- ions. Many features in
the observed spectra hereby confirm the inherently relativistic behavior of
even the simplest compound quantum systems in Nature.Comment: Version 18/11/0
- âŠ