6,202 research outputs found

    Autonomous thermal machine for amplification and control of energetic coherence

    Get PDF
    We present a model for an autonomous quantum thermal machine comprised of two qubits capable of manipulating and even amplifying the local coherence in a non-degenerate external system. The machine uses only thermal resources, namely, contact with two heat baths at different temperatures, and the external system has a non-zero initial amount of coherence. The method we propose allows for an interconversion between energy, both work and heat, and coherence in an autonomous configuration working in out-of-equilibrium conditions. This model raises interesting questions about the role of fundamental limitations on transformations involving coherence and opens up new possibilities in the manipulation of coherence by autonomous thermal machines.Comment: v1: 5 + 3 pages, 2 figures. v2: Restructured version with several new results and a new appendix, 11 + 14 pages, 4 + 3 figures. v3: Improved and corrected version with new discussions, 8 + 8 pages, 4 + 3 figure

    Separability Criteria and Entanglement Measures for Pure States of N Identical Fermions

    Full text link
    The study of the entanglement properties of systems of N fermions has attracted considerable interest during the last few years. Various separability criteria for pure states of N identical fermions have been recently discussed but, excepting the case of two-fermions systems, these criteria are difficult to implement and of limited value from the practical point of view. Here we advance simple necessary and sufficient separability criteria for pure states of N identical fermions. We found that to be identified as separable a state has to comply with one single identity involving either the purity or the von Neumann entropy of the single-particle reduced density matrix. These criteria, based on the verification of only one identity, are drastically simpler than the criteria discussed in the recent literature. We also derive two inequalities verified respectively by the purity and the entropy of the single particle, reduced density matrix, that lead to natural entanglement measures for N-fermion pure states. Our present considerations are related to some classical results from the Hartree-Fock theory, which are here discussed from a different point of view in order to clarify some important points concerning the separability of fermionic pure states.Comment: 6 pages, 0 figure

    Simple relationship between the virial-route hypernetted-chain and the compressibility-route Percus--Yevick values of the fourth virial coefficient

    Full text link
    As is well known, approximate integral equations for liquids, such as the hypernetted chain (HNC) and Percus--Yevick (PY) theories, are in general thermodynamically inconsistent in the sense that the macroscopic properties obtained from the spatial correlation functions depend on the route followed. In particular, the values of the fourth virial coefficient B4B_4 predicted by the HNC and PY approximations via the virial route differ from those obtained via the compressibility route. Despite this, it is shown in this paper that the value of B4B_4 obtained from the virial route in the HNC theory is exactly three halves the value obtained from the compressibility route in the PY theory, irrespective of the interaction potential (whether isotropic or not), the number of components, and the dimensionality of the system. This simple relationship is confirmed in one-component systems by analytical results for the one-dimensional penetrable-square-well model and the three-dimensional penetrable-sphere model, as well as by numerical results for the one-dimensional Lennard--Jones model, the one-dimensional Gaussian core model, and the three-dimensional square-well model.Comment: 8 pages; 4 figures; v2: slight change of title; proof extended to multicomponent fluid

    Quantum fluctuation theorems for arbitrary environments: adiabatic and non-adiabatic entropy production

    Get PDF
    We analyze the production of entropy along non-equilibrium processes in quantum systems coupled to generic environments. First, we show that the entropy production due to final measurements and the loss of correlations obeys a fluctuation theorem in detailed and integral forms. Second, we discuss the decomposition of the entropy production into two positive contributions, adiabatic and non-adiabatic, based on the existence of invariant states of the local dynamics. Fluctuation theorems for both contributions hold only for evolutions verifying a specific condition of quantum origin. We illustrate our results with three relevant examples of quantum thermodynamic processes far from equilibrium.Comment: 20 pages + 6 of appendices; 7 figures; v2: New example added (example A) and some minor corrections; accepted in Phys. Rev.

    Nonequilibrium potential and fluctuation theorems for quantum maps

    Get PDF
    We derive a general fluctuation theorem for quantum maps. The theorem applies to a broad class of quantum dynamics, such as unitary evolution, decoherence, thermalization, and other types of evolution for quantum open systems. The theorem reproduces well-known fluctuation theorems in a single and simplified framework and extends the Hatano-Sasa theorem to quantum nonequilibrium processes. Moreover, it helps to elucidate the physical nature of the environment inducing a given dynamics in an open quantum system.Comment: 10 page

    Complexity analysis of Klein-Gordon single-particle systems

    Full text link
    The Fisher-Shannon complexity is used to quantitatively estimate the contribution of relativistic effects to on the internal disorder of Klein-Gordon single-particle Coulomb systems which is manifest in the rich variety of three-dimensional geometries of its corresponding quantum-mechanical probability density. It is observed that, contrary to the non-relativistic case, the Fisher-Shannon complexity of these relativistic systems does depend on the potential strength (nuclear charge). This is numerically illustrated for pionic atoms. Moreover, its variation with the quantum numbers (n, l, m) is analysed in various ground and excited states. It is found that the relativistic effects enhance when n and/or l are decreasing.Comment: 4 pages, 3 figures, Accepted in EPL (Europhysics Letters

    Evaluating the process for deceased organ donation: a programme theory approach

    Get PDF
    – Organ donation and transplantation services represent a microcosm of modern healthcare organisations. They are complex adaptive systems. They face perpetual problems of matching supply and demand. They operate under fierce time and resource constraints. And yet they have received relatively little attention from a systems perspective. The purpose of this paper is to consider some of the fundamental issues in evaluating, improving and policy reform in such complex systems

    Information theory of quantum systems with some hydrogenic applications

    Full text link
    The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\"odinger probability density. First, we examine these concepts and its application to quantum systems with central potentials. Then, we calculate these measures for hydrogenic systems, emphasizing their predictive power for various physical phenomena. Finally, some recent open problems are pointed out.Comment: 9 pages, 3 figure
    corecore