1,076 research outputs found

    Predicting outcome in childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis

    Get PDF
    BACKGROUND: Diffuse midline gliomas (DMG) are aggressive brain tumours, previously known as diffuse intrinsic pontine gliomas (DIPG), with 10% overall survival (OS) at 18 months. Predicting OS will help refine treatment strategy in this patient group. MRI based texture analysis (MRTA) is novel image analysis technique that provides objective information about spatial arrangement of MRI signal intensity (heterogeneity) and has potential to be imaging biomarker. OBJECTIVES: To investigate MRTA in predicting OS in childhood DMG. METHODS: Retrospective study of patients diagnosed with DMG, based on radiological features, treated at our institution 2007-2017. MRIs were acquired at diagnosis and 6 weeks after radiotherapy (54Gy in 30 fractions). MRTA was performed using commercial available TexRAD research software on T2W sequence and Apparent Diffusion Coefficient (ADC) maps encapsulating tumour in the largest single axial plane. MRTA comprised filtration-histogram technique using statistical and histogram metrics for quantification of texture. Kaplan-Meier survival analysis determined association of MRI texture parameters with OS. RESULTS: 32 children 2-14 years (median 7 years) were included. MRTA was undertaken on T2W (n=32) and ADC (n=22). T2W-MRTA parameters were better at prognosticating than ADC-MRTA. Children with homogenous tumour texture, at medium scale on diagnostic T2W MRI, had worse prognosis (Mean of Positive Pixels (MPP): p=0.005, mean: p=0.009, SD: p=0.011, kurtosis: p=0.037, entropy: p=0.042). Best predictor MPP was able to stratify patients into poor and good prognostic groups with median survival of 7.5 months versus 17.5 months, respectively. CONCLUSIONS: DMG with more homogeneous texture on diagnostic MRI is associated with worse prognosis. Texture parameter MPP is the most predictive marker of OS in childhood DMG

    Leigh syndrome mimicking neuromyelitis optica spectrum disorder (NMOSD)

    Get PDF
    We report two children with molecularly confirmed mitochondrial disease mimicking Neuromyelitis Optica Spectrum Disorder (NMOSD). The first patient presented at the age of 15 months with acute deterioration following a pyrexial illness with clinical features localising to the brainstem and spinal cord. The second patient presented at 5 years with acute bilateral visual loss. In both cases, MOG and AQP4 antibodies were negative. Both patients died within a year of symptoms onset from respiratory failure. Arriving at an early genetic diagnosis is important for redirection of care and avoiding potentially harmful immunosuppressant therapies

    RARS2 mutations in a sibship with infantile spasms

    Get PDF
    Pontocerebellar hypoplasia is a group of heterogeneous neurodevelopmental disorders characterized by reduced volume of the brainstem and cerebellum. We report two male siblings who presented with early infantile clonic seizures, and then developed infantile spasms associated with prominent isolated cerebellar hypoplasia/atrophy on magnetic resonance imaging (MRI). Using whole exome sequencing techniques, both were found to be compound heterozygotes for one previously reported and one novel mutation in the gene encoding mitochondrial arginyl-tRNA synthetase 2 (RARS2). Mutations in this gene have been classically described in pontocerebellar hypoplasia type six (PCH6), a phenotype characterized by early (often intractable) seizures, profound developmental delay, and progressive pontocerebellar atrophy. The electroclinical spectrum of PCH6 is broad and includes a number of seizure types: myoclonic, generalized tonic-clonic, and focal clonic seizures. Our report expands the characterization of the PCH6 disease spectrum and presents infantile spasms as an associated electroclinical phenotype

    Chemo-resistant gestational trophoblastic neoplasia: a review of cases at a tertiary cancer centre

    Get PDF
    Background: Gestational trophoblastic neoplasia (GTN) was earlier a dreaded malignancy with high mortality rates. GTN is now considered to be one of the most curable solid tumours in women with cure rates greater than 90% even in the presence of metastases. Despite the high chemo sensitivity, treatment failure or drug resistance has been described in both groups.Methods: In this study, available records of GTN cases over 6 years were reviewed with emphasis on those who were resistant to the first line of chemotherapy. Of these, 37(34.58%) were resistant to the first line of chemotherapy. These cases were studied with respect to age, parity, antecedent pregnancy, interval from antecedent pregnancy, pretreatment β hCG, risk score and presence of metastases. The data was analyzed in order to find any risk factors associated with chemo-resistance.Results: Total number of cases of GTN was 107. Out of these 107 cases, 63 (58.88%) were low risk and 44 (41.12%) were high risk according to FIGO scoring system. Complete response was achieved with first line chemotherapy in 70 (65.42%) patients. The remaining 37 (34.57%) were resistant to first line chemotherapy. In the low risk group, 30 (47.62%) cases, and in the high-risk group, 7(15.91%) were resistant to first line of chemotherapy.Conclusions: Despite the high chemo sensitivity of GTN, resistance to first line chemotherapy may be encountered in up to 40% of cases.  It is important to identify the patients who are at risk to develop resistance, early identification of resistance and change of chemotherapy so as to minimize the exposure of these patients to ineffective chemotherapy

    Spectrum of neuroimaging findings post-proton beam therapy in a large pediatric cohort

    Get PDF
    PURPOSE: Proton beam therapy (PBT) is now well established for the treatment of certain pediatric brain tumors. The intrinsic properties of PBT are known to reduce long-term negative effects of photon radiotherapy (PRT). To better understand the intracranial effects of PBT, we analyzed the longitudinal imaging changes in a cohort of children with brain tumors treated by PBT with clinical and radiotherapy dose correlations. MATERIALS AND METHODS: Retrospective imaging review of 46 patients from our hospital with brain tumors treated by PBT. The imaging findings were correlated with clinical and dose parameters. RESULTS: Imaging changes were assessed by reviewing serial magnetic resonance imaging (MRI) scans following PBT over a follow-up period ranging from 1 month to 7 years. Imaging changes were observed in 23 patients undergoing PBT and categorized as pseudoprogression (10 patients, 43%), white matter changes (6 patients, 23%), parenchymal atrophy (6 patients, 23%), and cerebral large vessel arteriopathy (5 patients, 25%). Three patients had more than one type of imaging change. Clinical symptoms attributable to PBT were observed in 13 (28%) patients. CONCLUSION: In accordance with published literature, we found evidence of varied intracranial imaging changes in pediatric brain tumor patients treated with PBT. There was a higher incidence (10%) of large vessel cerebral arteriopathy in our cohort than previously described in the literature. Twenty-eight percent of patients had clinical sequelae as a result of these changes, particularly in the large vessel arteriopathy subgroup, arguing the need for angiographic and perfusion surveillance to pre-empt any morbidities and offer potential neuro-protection

    Expanding the phenotypic spectrum consequent upon de novo WDR37 missense variants.

    Get PDF
    Structural eye disorders are increasingly recognised as having a genetic basis, although current genetic testing is limited in its success. De novo missense variants in WDR37 are a recently described cause of a multisystemic syndromic disorder featuring ocular coloboma. This study characterises the phenotypic spectrum of this disorder and reports 2 de novo heterozygous variants (p.Thr115Ile, p.Ser119Tyr) in three unrelated Caucasian individuals. All had a clinical phenotype consisting of bilateral iris and retinal coloboma, developmental delay and additional, variable multisystem features. The variants fall within a highly conserved region upstream of the WD-repeat domains, within an apparent mutation cluster. Consistent with the literature, intellectual disability, structural eye disorders, epilepsy, congenital heart disease, genitorenal anomalies and dysmorphic facial features were observed. In addition, a broader developmental profile is reported with a more specific musculoskeletal phenotype described in association with the novel variant (p.Thr115Ile). We further expand the phenotypic spectrum of WDR37-related disorders to include those with milder developmental delay and strengthen the association of ocular coloboma and musculoskeletal features. We promote the inclusion of WDR37 on gene panels for intellectual disability, epilepsy and structural eye disorders
    corecore