40 research outputs found

    Micro-machining techniques for the fabrication of fibre Fabry-Perot sensors

    Get PDF
    Fabry-Perot optical fibre sensors have been used extensively for measuring a variety of parameters such as strain, temperature, pressure and vibration. Conventional extrinsic fibre Fabry-Perot sensors are associated with problems such as calibration of the gauge length of each individual sensor, their relatively large size compared to the diameter of optical fibre and a manual manufacturing method that leads to poor reproducibility. Therefore, new designs and fabrication techniques for producing fibre Fabry-Perot sensors are required to address the problems of extrinsic fibre Fabry-Perot sensors. This thesis investigates hydrofluoric acid etching and F2-laser micro-machining of optical fibres to produce intrinsic Fabry-Perot cavities. Chemical etching of single mode fused silica fibres produced cavities across the core of the fibres due to preferential etching of the doped-region. Scanning electron microscope, interferometric surface profiler and CCD spectrometer studies showed that the optical quality of the etched cavities was adequate to produce Fabry-Perot interference. Controlled fusion splicing of etched fibres produced intrinsic Fabry-Perot cavities. These sensors were surface-mounted on composite coupons and their response to applied strain was studied using low coherence interferometry. These sensors showed linear and repeatable response with the strain measured by the electrical resistance strain gauges. To carry out F2-laser micro-machining of fused silica and sapphire substrates, a micro-machining station was designed and constructed. This involved the design of illumination optics for 157 nm laser beam delivery, the design and construction of beam delivery chamber, target alignment and monitoring systems. Ablation of fused silica and sapphire disks was carried out to determine ablation parameters suitable for micro-machining high aspect ratio microstructures that have adequate optical quality to produce Fabry-Perot interference. Cavities were micro-machined through the diameter of SMF 28 and SM 800 fibres at different energy densities. CCD interrogation of these intrinsic fibre cavities ablated at an energy density of 25 x 10 4 Jm -2 produced Fabry-Perot interference fringes. The feasibility of micro-machining high aspect ratio cavities at the cleaved end-face of the fused silica fibres and through the diameter of sapphire fibres was demonstrated. A technique based on in-situ laser-induced fluorescence monitoring was developed to determine the alignment of optical fibres and ablation depth during ablation through the fibre diameter. Ablation of cavities through the diameter of fibre Bragg gratings showed that the heat-generated inside the cavity during ablation had no effect on the peak reflection and the integrity of core and cladding of the fibre. Finally, a pH-sensor, a chemical sensor based on multiple cavities ablated in multimode fibres and a feasible design for pressure sensor fabrication based on ablated cavity in a single mode fibre were demonstrated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Simultaneous DSC-FTIR spectroscopy : comparison of cross-linking kinetics of an epoxy/amine resin system

    Get PDF
    AbstractThe top-cover of a conventional differential scanning calorimeter (DSC) was modified to accommodate two custom-made fibre-optic probes. The function of the probes was to illuminate the sample and reference compartments of the DSC and to return the reflected light from the DSC pans to a fibre-coupled Fourier transform near-infrared (FTIR) spectrometer. The cross-linking kinetics of a commercially available epoxy/amine resin system were studied using the conventional and modified DSC along with conventional transmission FTIR spectroscopy. The cross-linking kinetics and the activation energies for the epoxy/amine resin system obtained via the conventional DSC and simultaneous DSC/FTIR were similar (60.22–60.97 kJ mol−1). However, the activation energy obtained for the cuvette-based conventional transmission FTIR experiments was found to be lower (54.66 kJ mol−1). This may be attributed to the temperature-control attained within the cuvette holder. The feasibility of using a simple fibre-optic probe to link the DSC to the FTIR spectrometer was demonstrated

    Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor

    Get PDF
    AbstractThis paper reports on the design, fabrication, characterisation and deployment of a multi-measurand optical fibre sensor (MMS) that is capable of simultaneously monitoring strain, temperature, refractive index and cross-linking chemistry. The sensor design is based on the extrinsic fibre Fabry–Perot interferometer. A feature of this sensor system is that a conventional multi-channel fibre-coupled near-infrared spectrometer is used to monitor the four independent parameters. The issues relating to the measurement resolution of the individual sensors and the associated interrogation equipment are discussed. The MMS was embedded in between the fourth and fifth plies of an eight-ply E-glass plain-weave fabric. A commercially available thermosetting epoxy/amine resin system was used to impregnate the fabric layers manually. The laminated preform was vacuum-bagged and cured in an autoclave. The following parameters were monitored: the depletion rates of the epoxy and amine functional groups in the resin system; the temperature in close proximity to the “chemical sensor”; the evolution of strain; and the refractive index of the resin system. The effect of post-processing on the output from the embedded optical fibre sensors is also considered

    A Semi-Physiologically Based Pharmacokinetic Model Describing the Altered Metabolism of Midazolam Due to Inflammation in Mice

    Get PDF
    This is the author's accepted manuscript.Purpose To investigate influence of inflammation on metabolism and pharmacokinetics (PK) of midazolam (MDZ) and construct a semi-physiologically based pharmacokinetic (PBPK) model to predict PK in mice with inflammatory disease. Methods Glucose-6-phosphate isomerase (GPI)-mediated inflammation was used as a preclinical model of arthritis in DBA/1 mice. CYP3A substrate MDZ was selected to study changes in metabolism and PK during the inflammation. The semi-PBPK model was constructed using mouse physiological parameters, liver microsome metabolism, and healthy animal PK data. In addition, serum cytokine, and liver-CYP (cytochrome P450 enzymes) mRNA levels were examined. Results The in vitro metabolite formation rate was suppressed in liver microsomes prepared from the GPI-treated mice as compared to the healthy mice. Further, clearance of MDZ was reduced during inflammation as compared to the healthy group. Finally, the semi-PBPK model was used to predict PK of MDZ after GPI-mediated inflammation. IL-6 and TNF-α levels were elevated and liver-cyp3a11 mRNA was reduced after GPI treatment. Conclusion The semi-PBPK model successfully predicted PK parameters of MDZ in the disease state. The model may be applied to predict PK of other drugs under disease conditions using healthy animal PK and liver microsomal data as inputs

    Micro-machining Techniques for the Fabrication of Fibre Fabry-Perot Sensors

    No full text
    Fabry-Perot optical fibre sensors have been used extensively for measuring a variety of parameters such as strain, temperature, pressure and vibration. Conventional extrinsic fibre Fabry-Perot sensors are associated with problems such as calibration of the gauge length of each individual sensor, their relatively large size compared to the diameter of optical fibre and a manual manufacturing method that leads to poor reproducibility. Therefore, new designs and fabrication techniques for producing fibre Fabry-Perot sensors are required to address the problems of extrinsic fibre Fabry-Perot sensors. This thesis investigates hydrofluoric acid etching and F2-laser micro-machining of optical fibres to produce intrinsic Fabry-Perot cavities. Chemical etching of single mode fused silica fibres produced cavities across the core of the fibres due to preferential etching of the doped-region. Scanning electron microscope, interferometric surface profiler and CCD spectrometer studies showed that the optical quality of the etched cavities was adequate to produce Fabry-Perot interference. Controlled fusion splicing of etched fibres produced intrinsic Fabry-Perot cavities. These sensors were surface-mounted on composite coupons and their response to applied strain was studied using low coherence interferometry. These sensors showed linear and repeatable response with the strain measured by the electrical resistance strain gauges. To carry out F2-laser micro-machining of fused silica and sapphire substrates, a micro-machining station was designed and constructed. This involved the design of illumination optics for 157 nm laser beam delivery, the design and construction of beam delivery chamber, target alignment and monitoring systems. Ablation of fused silica and sapphire disks was carried out to determine ablation parameters suitable for micro-machining high aspect ratio microstructures that have adequate optical quality to produce Fabry-Perot interference. Cavities were micro-machined through the diameter of SMF 28 and SM 800 fibres at different energy densities. CCD interrogation of these intrinsic fibre cavities ablated at an energy density of 25 x 10 4 Jm -2 produced Fabry-Perot interference fringes. The feasibility of micro-machining high aspect ratio cavities at the cleaved end-face of the fused silica fibres and through the diameter of sapphire fibres was demonstrated. A technique based on in-situ laser-induced fluorescence monitoring was developed to determine the alignment of optical fibres and ablation depth during ablation through the fibre diameter. Ablation of cavities through the diameter of fibre Bragg gratings showed that the heat-generated inside the cavity during ablation had no effect on the peak reflection and the integrity of core and cladding of the fibre. Finally, a pH-sensor, a chemical sensor based on multiple cavities ablated in multimode fibres and a feasible design for pressure sensor fabrication based on ablated cavity in a single mode fibre were demonstrated

    Not Available

    No full text
    Not AvailableA 5–9–1 artificial neural network (ANN) model, with a back propagation learning algorithm, was developed to predict draught requirements of different tillage implements in a sandy clay loam soil under varying operating and soil conditions. The input parameters of the network were width of cut, depth of operation, speed of operation, soil moisture content and soil bulk density. The output from the network was the draught requirement of the individual tillage implement. The developed model predicted the draught requirement of mouldboard plough, cultivator and disk harrow with an error < 6.5% when compared to the measured draught values, whereas the American Society of Agricultural and Biological Engineers (ASABE) equation predicted these draught values with an error > 30%. Such encouraging results indicate that the developed ANN model for draught prediction could be considered as an alternative and practical tool for predicting draught requirement of tillage implements under the selected experimental conditions in sandy clay loam soils. Further work is required to demonstrate the generalised value of this ANN in other soil conditions.Not Availabl

    Process modelling of combined degumming and bleaching in palm oil refining using artificial neural network

    Get PDF
    Combined degumming and bleaching is the first stage of processing in a modern physical refining plant. In the current practice, the amount of phosphoric acid (degumming agent) and bleaching earth (bleaching agent) added during this process is usually fixed within a certain range. There is no system that can estimate the right amount of chemicals to be added in accordance with the quality of crude palm oil (CPO) used. The use of an Artificial Neural Network (ANN) for an improved operating procedure was explored in this process. A feed forward neural network was designed using a back-propagation training algorithm. The optimum network for the response factor of phosphoric acid and bleaching earth dosages prediction were selected from topologies with the smallest validation error. Comparisons of ANN predicted results with industrial practice were made. It is proven in this study that ANN can be effectively used to determine the phosphoric acid and bleaching earth dosages for the combined degumming and bleaching process. In fact, ANN gives much more precise required dosages depending on the quality of the CPO used as feedstock. Therefore, the combined degumming and bleaching process can be further optimised with savings in cost and time through the use of ANN

    Monitoring pre-stressed composites using optical fibre sensors

    No full text
    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites
    corecore