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Abstract

Purpose—To investigate influence of inflammation on metabolism and pharmacokinetics (PK) 

of midazolam (MDZ) and construct a semi-physiologically based pharmacokinetic (PBPK) model 

to predict PK in mice with inflammatory disease.

Methods—Glucose-6-phosphate isomerase (GPI)-mediated inflammation was used as a 

preclinical model of arthritis in DBA/1 mice. CYP3A substrate MDZ was selected to study 

changes in metabolism and PK during the inflammation. The semi-PBPK model was constructed 

using mouse physiological parameters, liver microsome metabolism, and healthy animal PK data. 

In addition, serum cytokine, and liver-CYP (cytochrome P450 enzymes) mRNA levels were 

examined.

Results—The in vitro metabolite formation rate was suppressed in liver microsomes prepared 

from the GPI-treated mice as compared to the healthy mice. Further, clearance of MDZ was 

reduced during inflammation as compared to the healthy group. Finally, the semi-PBPK model 

was used to predict PK of MDZ after GPI-mediated inflammation. IL-6 and TNF-α levels were 

elevated and liver-cyp3al 1 mRNA was reduced after GPI treatment.

Conclusion—The semi-PBPK model successfully predicted PK parameters of MDZ in the 

disease state. The model may be applied to predict PK of other drugs under disease conditions 

using healthy animal PK and liver microsomal data as inputs.
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INTRODUCTION

Inflammation and other disease conditions are known to alter the expression of cytochrome 

P450 enzymes (CYPs) due to increased proinflammatory cytokine levels (1,2). Typically, 

cytokines such as IL-6, IL-1β, IFN-γ and TNF-α are increased during inflammation. 

Elevated cytokine levels can lead to suppression of various CYPs. Increased IL-6 levels 

downregulate CYP3A4, while TNF-α downregulates CYP2C19 (3–5). Thus, inflammation 

and elevated cytokine levels may cause disease-drug interactions by altering the 

pharmacokinetics (PK) and specifically clearance of drugs that are metabolized by CYPs.

Cytokine-mediated CYP suppression is believed to occur through a nuclear receptor, hepatic 

nuclear factor-4α (HNF-4α). Elevated IL-6, TNF-α and IL-1β can inhibit the action of 

HNF-4α. HNF-4α is involved in the regulation of pregnane X receptor (PXR) and 

constitutive androstane receptor (CAR) that are responsible for regulating the expression of 

CYP3A4 following exposure to some xenobiotics (4). Elevated IL-6 is known to down-

regulate CYP3A4, CYP2C9, CYP2C19 and CYP1A2, while TNF-α down-regulates 

CYP2C19 (3,6). In this study, the hypothesis was that the elevated cytokines during 

inflammation (diseased state) would suppress the expression of mouse cyp3a11 (76% amino 

add homology with the human CYP3A4) (7), which may lead to changes in PK of its 

substrates.

In the case of glucose-6-phosphate isomerase (GPI)-mediated inflammation in DBA/1 mice, 

circulating levels of IL-6 and TNF-α were increased (8). This GPI model of inflammation is 

frequently used to test the anti-inflammatory activity of new chemical entities (NCEs) (9). 

The PK of NCEs is generally studied using healthy mice, and the data are often used to 

inform dose selection for demonstration of efficacy in an inflammation model. Therefore, it 

is worthwhile to develop a mechanistic approach, which includes the CYP activity 

differences in healthy versus diseased mice, to inform dose selection for the pharmacological 

assays utilizing the GPI model. The overall goal of this study was to build a model for dose 

selection, which can more accurately predict dose response in the diseased state based off 

healthy animal-PK data and in vitro metabolism data (healthy and diseased).

Midazolam (MDZ), a known CYP3A4 substrate, was selected as a model compound for in 
vitro metabolism and PK studies. Lipopolysaccharide- (10,11) and carrageenan-induced 

inflammation (12) both have been reported to alter the PK of MDZ. Metabolism of MDZ 

was evaluated using liver microsomes prepared from healthy and GPI-treated mice. 

According to the published in vitro experiments in humans and rodents, MDZ is mainly 

metabolized by CYP3A to form 1-OH-MDZ and 4-OH-MDZ. The phase 1 metabolites of 

MDZ may be further conjugated with glucuronide to form 1-OH-MDZ-glucuronide and 4-

OH-MDZ-glucuronide. In a PK study using chimeric mice with humanized livers (PXB 

mice), 1-OH-MDZ, 4-OH-MDZ, 1,4-diOH-MDZ, and 1-OH-MDZ-glucuronide were 
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detected in plasma. However, 4-OH-MDZ and 1-OH-MDZ-glucuronide were not detected in 

severe combined immune deficient (SCID) mice (10,13–15).

In this work, a semi-physiologically based pharmacokinetic (PBPK) model was constructed 

to predict PK of MDZ in mice with GPI-mediated inflammation. The model equations and 

methodology could be applied to other drugs to predict altered PK parameters in disease 

models using a limited data set, including healthy-animal PK data and in vitro liver 

microsome studies.

METHODS

The methods section is divided into various subsections describing the in vitro metabolism, 

PK, Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, semi-PBPK model, and 

quantitation of cytokines and mRNA Briefly, the rate of 1-OH-MDZ formation in the liver 

microsomes was used to assess the degree of inflammation-mediated suppression of MDZ 

metabolism. In addition, MDZ PK parameters were compared in the healthy and GPI-treated 

mice. Finally, both the in vitro (in healthy and GPI mice) and PK data (in healthy mice) were 

used to build the semi-PBPK model. The in vitro microsomal data defined metabolism of 

MDZ from the liver and intestines, while the parameters associated with a 2-compartment 

model were estimated using the healthy animal PK data. These estimated PK parameters 

were used to define the central and peripheral compartments of the semi-PBPK model (Fig. 

1). The 2-compartment model PK parameters from GPI mice were used to illustrate that the 

PK in the diseased state can be predicted using in vitro (healthy and diseased animals) and 

healthy animal PK data. In addition, serum cytokine levels were measured in the healthy 

mice and on days 12 and 21 after GPI treatment. The mRNA-levels of cyp3all, cyp2c29 and 

cyp2d26 in liver were also measured on days 1, 5, 8 and 15 after GPI treatment.

Animals

Male DBA/1 mice (Harlan Laboratories, Indianapolis, IN) were acclimatized for 3 days and 

housed as 4 animals per cage or individually if a cage mate was not available. Animals were 

approximately 9–10 weeks old at the start of the study. A 12-h light and 12-h dark cycle was 

maintained throughout the study. Mice were fed and given access to water ad libitum. All 

procedures were in compliance with the Guide for the Care and Use of Laboratory Animals: 

Eighth Edition, (Institute for Laboratory Animal Research, The National Academies Press, 

Washington, D.C.); and the National Institutes of Health, Office of Laboratory Animal 

Welfare (NIH publication no. 85–23, revised 1985). Whenever possible, procedures were 

designed to avoid or minimize discomfort, distress, and pain to the animals.

GPI Treatment

The mice were treated with GPI according to a previously published protocol with a few 

modifications (16). Briefly, a 4-mg/mL solution of recombinant human GPI was mixed with 

an equal volume of complete Freund’s adjuvant This final 2 mg/mL solution of GPI was 

used for the treatment. A 100-μL (200-μg) injection of the above solution was administered 

at both sides of the tail base to induce inflammation.
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Preparation of Mouse Liver Microsomes (MLM) and In Vitro Experiments

Healthy and diseased mice were sacrificed using cardiac puncture either immediately or on 

day 12 after the GPI treatment, and the livers were collected and stored at −80°C until 

immediately before use. The MLM were prepared using previously reported protocols 

(17,18). The protein content of MLM was measured using the bidnchoninic add assay using 

a reported procedure (19). Liver microsome kinetic studies of 1-OH-MDZ and 4-OH-MDZ 

formation were carried out by following the reported methods (13,15,20). Based on the 

linear relationship of MDZ metabolism and MLM protein concentration from 0.1 to 0.5 

mg/mL (data not shown), a protein content of 0.1 mg/mL was selected for all subsequent 

microsomal experiments. A 2-min incubation time was selected for kinetic experiments 

based on an earlier study, which reported that the incubation time for formation of the 

metabolites was linear up to 20 min using MLM and human liver microsomes (HIM) (20). 

The rate of 1-OH-MDZ and 4-OH-MDZ formation was measured at concentrations of MDZ 

ranging from 0 to 250 μM. The data obtained was fitted to a substrate inhibition kinetics 

using GraphPad Prism 6 (GraphPad Software Inc., La jolla, CA).

Pharmacokinetics of MDZ

MDZ was administered via intravenous (IV) or oral (PO) routes at 1 mg/kg or 5 mg/kg, 

respectively. The PO bioavailability of MDZ was low (F = 0.023) according to the 

previously published report (21). Therefore, a higher PO dose was selected. Approximately 

20 μL of blood was collected using a capillary and applied directly on dried blood spot 

(DBS) cards at time points as follows: IV- 0.08, 0.166, 0.33, 0.5, 1, 2, 4, 6,8 h and PO- 

0.166,0.33,0.5,1, 2,4, 6, 8 h. The DBS samples were analyzed for MDZ, 1-OH-MDZ, 4-OH-

MDZ and 1-OH-MDZ-glucuronide. The MDZ used for dosing in the PK studies was 

obtained from Hospira (Lake Forrest, IL). The MDZ, 1-OH-MDZ and 4-OH-MDZ standards 

were obtained from Cerilliant Corporation (Round Rock, TX), while the 1-OH-MDZ-

glucuonide standard was obtained from Toronto Research Chemicals (Ontario, Canada).

Pharmacokinetics of MDZ in the healthy and diseased mice were compared using 3 animal 

groups as shown in the Supplementary Fig. 1. The first group was not treated with GPI and 

was kept for 21 days before MDZ dosing and DBS sample collection. The second group was 

treated with GPI on day 10 of the study, while the third group was treated with GPI on day 

1. Finally, MDZ was administered on day 21, and DBS samples were subsequently collected 

to measure blood concentration of the analytes (MDZ, 1-OH-MDZ, 4-OH-MDZ and 1-OH-

MDZ-glucuronide). The healthy and diseased animal PK parameters were obtained using 

non-compartmental analysis (NCA) using SimBiology (Matlab R2017a). Analysis of 

variance (ANOVA) and Tukey’s comparison test were used to determine differences in PK 

parameters in healthy and diseased mice.

Measurement of Fraction Unbound in Plasma and Liver Microsomes

The fraction unbound MDZ to the proteins in the plasma and liver microsomes was 

determined at 37°C using a HT dialysis micro equilibrium device with a 12–14 kDa 

molecular weight cutoff (Gales Ferry, CT) in a stirred 37°C bath The microsomal protein 

concentration was 0.5 mg/mL in phosphate buffer (100 mM, pH 7.4), and the plasma was 

thawed on the day of use and adjusted to pH 7.4 using phosphoric add. The samples were 
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collected from both the protein side and buffer side of the membrane after 0 and 4.5 h. The 

signal for MDZ was monitored by LC-MS/MS with a calibration curve range from 1 to 5000 

nM and an acceptable interference peak less than 25% of the lower limit of quantitation. 

Deviations of less than ±30% were acceptable for the calibration curve samples. Fraction 

unbound was calculated as a ratio of MDZ concentration in the buffer and protein chambers. 

Percent recovery (data not shown) was calculated by dividing the sum of the buffer and 

protein chambers by the time 0 concentration.

Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis of DBS Samples

Analysis of MDZ and its metabolites was performed using a previously published protocol 

with modifications as described (22). Stock solutions of each analyte were combined and 

serially diluted to produce a range of working solutions, which were used to fortify control 

mouse blood to yield calibration standards (1 to 10,000 ng/mL). These calibration standards 

were then spotted onto DBS cards and allowed to dry at room temperature. A 3-mm punch 

of each study and standard DBS sample was removed and placed in separate wells of 96-

well plates, then extracted with a methanol/acetonitrile (1:1, v/v) solution containing internal 

standards. The resulting extracts were analyzed using an ABSdex API4000 triple quadrupole 

mass spectrometer LC-MS/MS instrument (Applied Biosystems/MDS; Foster City, CA) run 

in positive ion mode using a ThermoFisher Betasil C18 2 × 20-mm 5-μm HPLC column 

(ThermoFisher Scientific, Waltham, MA) with 0.1% formic add/water and an acetonitrile 

gradient to achieve the chromatographic separation. Each compound was detected and 

quantified with analyte specific selected reaction monitoring (SRM) (M + H)+ transitions 

(MDZ: m/z 326.1 > 291.2, 1-OH-MDZ: m/z 342.1 > 203.2, 4-OH-MDZ: m/z 342.1 >234.2, 

1-OH-MDZ-glucuronide: m/z 518.2 > 324.1, D4-MDZ: m/z 330.1 > 295.2, and D4–1-OH-

MDZ: m/z 346.1 > 328.1). The mass spectrometer quadrupoles were tuned to achieve unit 

resolution (0.7 Da at 50% FWHM) and data were acquired and processed with Analyst 1.4.2 

(Applied Biosystems/MDS). The limit of detection was set at 5-fold greater than the noise. 

The lower limit of quantitation was 5 nM for MDZ, 1-OH-MDZ and 4-OH-MDZ.

LC-MS Analysis of the In Vitro Samples

The in vitro metabolism samples were analyzed by LC-MS/MS using an ABSdex QTrap 

6500 triple quadrupole mass spectrometer (Applied Biosystems/MDS; Foster City, CA) 

equipped with a TurboIonSpray interface and operated in a positive ion mode. The analytes 

were separated using an Ace Ultracore SuperC18 column (2.1 × 30-mm, 5-μm) with a 

gradient elution of 5-mM ammonium bicarbonate and acetonitrile. Each compound was 

detected and quantified by analyte specific SRM (M + H)+ transitions (1-OH-MDZ: m/z 
342.1 > 203.0, 4-OH-MDZ: m/z 342.1 > 234.0, and D4-l- OH-MDZ: m/z 346.1 > 203.0). 

The mass spectrometer quad-rupoles were tuned to achieve unit resolution (0.7 Da at 50% 

FWHM) and data were acquired and processed with Analyst 1.6 (Applied Biosystems/

MDS).

Construction of the Semi-PBPK Model

The semi-PBPK model with a 2-compartment PK model was constructed using SimBiology 

(Matlab R2017a) (Fig. 1). The mouse physiological parameters obtained from literature (23–

26), experimental values and the 2-compartment model estimated parameters (Tables IV, V 
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and Supplementary Table I) were used to construct the semi-PBPK model. The volumes of 

the central and peripheral compartments and rate constants for transfer of MDZ between the 

central and peripheral compartments were estimated by fitting the healthy-animal IV PK 

data with the 2-compartment PK model. ‘Nonlinear mixed-effects problems’ was used as the 

estimation method for the 2-compartment model fitting. The in vitro kinetic data for 1-OH-

MDZ and 4-OH-MDZ formation were used in the semi-PBPK model to define the rate of 

hepatic metabolism, while the literature data were used for the gut metabolism (Table V) 

(27). In the case of hepatic metabolism, Vmax-1-OH-MDZ-Liver, Vmax-4-OH-MDZ-Liver, 
Km-1-OH-MDZ-Liver and Km-OH-MDZ-Liver values in both the healthy and the diseased animals 

were obtained experimentally and a Vmax-1-OH-MDZ-Liver-Heaithy/Vmax-1-OH-MDZ-Liver-GPI 

ratio (0.55) was calculated (Table V). Experimental in vitro data were not available for gut 

metabolism, therefore literature values were used (27). It was assumed that the 

Vmax-1-OH-MDZ-gw-Healthy/Vmax-1-OH-MDZ-gw-GPI ratio for intestine was same as that for the 

hepatic metabolism. The values of gut Vmax-1-OH-MDZ-gw and Vmax-4-OH-MDZ-gw for day 12 

GPI mice were calculated using the ratio 0.55. Scaling of Vmax-1/4-OH-MDZ-Liver and 

Vmax-1/4-OH-MDZ-gw was done for the entire liver and intestine, respectively so that the 

values could be used in the semi-PBPK model. A scaling factor of 45 mg of liver 

microsomal protein per gram of mouse liver was used as mentioned in the previous report 

(28). For the intestinal Vmax-1/4-OH-MDZ-gw scaling, 23.6 mg of intestinal microsomal protein 

per gram of intestine was used (29). CYP3A is almost exclusively responsible for 

metabolism of MDZ to form hydroxylated metabolites (20,27). However, additional 

nonCYP3A metabolism in the gut was estimated by fitting the PO healthy animal PK data to 

the semi-PBPK model. This additional metabolism was defined by 

Vmax-nonVZCYP3A-MDZ-gw and Km-nonCTP3A-MDZ-gw (Table V). Similar to previously 

mentioned gut Vmax.1.OH-MDZ-gw calculations, the ratio of 0.55 was used to calculate 

Vmax-1-nonCYP3A-MDZ-gw for GPI treated mice, while Km-nonCYp3A-MDZ-gw was assumed as 

constant for the healthy and disease condition.

Sensitivity analysis was performed on the model input parameters as shown in 

Supplementary Figs. 9 and 10. The model parameters were altered by −100 to +500% of the 

original values listed in Tables IV and V.

The semi-PBPK model was adopted from a previously published study by Zhang et al. (30). 

The model can be described by eqs. 1 to 6 (Supplementary material), which were solved by 

the solver type ‘Ordinary differential equations (ODE) 15s’ (stiff/NDF). Eq. 1 represents 

absorption of MDZ through the gut lumen. Eqs. 2 and 5 defines MDZ metabolism in the 

intestine and liver, respectively. Eq. 3 is the ‘Well-Stirred’ gut model (31), which was used in 

eq. 2 for calculation of fraction unbound in gut (fu,g). Eq. 4 defines the transit of MDZ from 

the intestine and central compartment to the portal vein and then to the liver. The transfer of 

MDZ from the liver to central compartment and further exchange with the peripheral 

compartment is shown in eq. 6. Cgw, Cpv, Cliv, Ccen, Cper are concentration (nmol/L) of 

MDZ in gut wall, portal vein, liver, central compartment and peripheral compartment, 

respectively. Agl is the amount (nmol) of MDZ in the gut lumen compartment All other 

parameters in the eqs. 1 to 6 are mentioned in Tables IV and V. Assumptions in the semi-

PBPK model are described as follows, a) The in vitro literature data used to define intestinal 

metabolism of MDZ was applicable to the semi-PBPK model (27). b) Suppression of 
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intestinal CYP450 activity due to the GPI-mediated inflammation was same as in the liver, 

c) The mouse physiological parameters (blood flows, organ volumes) were same for the 

healthy and GPI treated diseased mice.

Quantitation of Serum Cytokines

Serum cytokines were quantitated using a mouse proinflammatory multiplex kit (Meso Scale 

Diagnostics, Rockville, MD) (34). Briefly, serum samples were diluted 2-fold with diluent, 

and 50 μL of diluted sample was added to each well on a pro-inflammatory panel plate (96-

well) and incubated for 2 h at room temperature. After washing 3 times with the wash buffer, 

25 μL of detection antibody solution was added per well, followed by an additional 2-h 

incubation at room temperature. The wells were washed 3 times with the wash buffer, and 

150 μL of 2X Read Buffer T was added to each well. The plate was immediately read on a 

MSD Sector S 600 (Meso Scale Diagnostics, Rockville, MD). Sample concentrations were 

calculated using calibration curves that were fitted using a 4-parameter logistic model with a 

1/Y2 weighting. ANOVA was used to establish statistical differences in cytokine levels for 

the healthy and diseased mice.

RNA Isolation and Cyp mRNA Level Detection by Quantitative Polymerase Chain Reaction 
(qPCR)

For each animal, 50–150 mg of frozen liver tissue was homogenized in the presence of 800 

μL of Trizol™ (Thermo Fisher Scientific, Waltham, MA) using FastPrep® lysing matrix D 

beads and the FastPrep®−24 homogenizer (MP Biomedicals, Santa Ana, CA). The 

homogenate was chilled on ice and was clarified by centrifugation (10,000 × g for 4 min). 

The clarified homogenate was mixed with an equal volume of 100% ethanol, and then 

processed using the Direc-Zol™ RNA isolation spin column protocol, including DNAse 1 

treatment (Zymo Research, Irvin, CA). The concentration and yields of the purified total 

liver RNA were determined using a Nanodrop™ 8000 spectrophotometer. Then 100 ng of 

purified RNA was used in a reverse transcription reaction to generate cDNA using TaqMan® 

High Capacity RNA-to-cDNA Kit (Applied Biosystems, Foster City, CA). The cDNA 

reaction was diluted 5-fold with sterile water and used for TaqMan® based quantitative PCR 

analysis for cyp3al 1, cyp2c29, and cyp2d26 mRNA targets as well as for the PPIB house-

keeping gene mRNA normalizer control. The qPCR data were collected on a 7900HT Real 

Time PCR instrument (Applied Biosystems). The data were analyzed using 

ExpressionSuite® software (Thermo Fisher Scientific, Waltham, MA), and cyp target 

mRNA levels were expressed relative to the PPIB mRNA normalizer control. The unpaired 

T-test was used to establish statistical differences between day-1 and −12 cyp mRNA levels.

Statistical Analysis

Chi square test was used to find association between predicted and observed PK profiles 

using Excel Chi square test function (35). ANOVA, T-test, Tukey’s multiple comparison test 

were performed using GraphPad Prism 6 (LaJolla, CA). Box-plots for cytokines and cyp-

mRNA were plotted using RStudio (Version 1.1.383).
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RESULTS

Effect of GPI-Mediated Inflammation on the In Vitro Metabolism of MDZ

The rate of 1-OH-MDZ formation was higher in the MLM prepared from heathy mice as 

compared to the MLM prepared from GPI-treated mice (Fig. 2 and Table I). The 

Vmax-1-OH-MDZ-Liver was suppressed by 44% in the diseased mice-MLM as compared to the 

healthy. The Vmax-1-OH-MDZ-Liver was 2.047 (± 0.005) nmol/min/mg in MLM of the healthy 

mice and 1.143 (± 0.021) nmol/min/mg in MLM of the GPI treated mice (P value ≤0.0001). 

This indicated that the GPI-mediated inflammation suppressed cyp3al 1 expression, leading 

to lower Vmax-1-OH-MDZ-Liver However, Kmax-1-OH-MDZ-Liver, was relatively unchanged (P 
value = 0.151) in the MLM prepared from the healthy versus diseased mice. In the case of 4-

OH-MDZ, both Vmax-1-OH-MDZ-Liver and Km-4-OH-MDZ-Liver were suppressed with the MLM 

prepared from the diseased animals as compared to healthy animals (P value ≤0.0001) (Fig. 

2 and Table II). The higher Km-4-OH-MDZ-Liver as compared to Km-1-OH-MDZ-Liver suggested 

that 4-OH-MDZ formation is a minor route of metabolism as compared to 1-OH-MDZ (P 
value ≤0.0001). Similar results concluding lower contribution of 4-OH-MDZ as compared to 

1-OH-MDZ were reported earlier (13,15).

Pharmacokinetics of MDZ in Healthy and GPI-Treated Mice

In the case of IV dosing, plasma MDZ profiles were available through 2 h for healthy and 

day 21 GPI mice, while for day 12 mice, plasma MDZ levels were available through 4 h 

(Fig. 3). In the case of PO dosing, for day 12 and 21, PK were available through 8 h, while 

for PO dosing in healthy mice, data were available through 2 h. In the case of PO dosing on 

day 12, inter-individual variability in the PK parameters (Table III, Supplementary Figs. 2 

and 3) was high. This inter-individual variability may be due to variability in the IL-6 levels 

(2700 to 6900 pg/mL) (Fig. 5) on day 12 leading to differences in the CYP suppression and 

PK of MDZ. Supplementary Figs. 4 and 5 describe PK profiles of 1-OH-MDZ and 4-OH-

MDZ, respectively after IV and PO MDZ administration. The AUC0–8h of 1-OH-MDZ after 

IV and PO administration of MDZ is shown in Supplementary Fig. 6. Fraction unbound in 

plasma (fu,p) for both the healthy and diseased states was measured and was same for both of 

these samples (Table IV).

The IV MDZ clearance decreased by 0.5-fold on day 12 after GPI treatment as compared to 

the healthy mice (P≤ 0.05) (Table III and Supplementary Fig. 2). By Day 21, the clearance in 

GPI-treated mice had still not returned to values observed in the healthy animals, although 

the differences were not significant (P = 0.179). In the case of the PO MDZ administration, 

the day 12 GPI clearance/F was 0.4-fold lower than that of the healthy mice (P ≤ 0.05) 

(Supplementary Fig. 3).

Prediction of MDZ PK in GPI-Treated Mice Using the Semi-PBPK Model

The Chi square test was used to compare observed PK profile with the predicted profile (Fig. 

4). For IV MDZ dosing, the observed and predicted healthy-animal PK profiles were similar 

with a Chi square test p-value of0.999. While, day 12 observed and predicted PK profiles 

were similar with the Chi square test p-value was 0.996. In the case of PO MDZ dosing, 

predicted and observed profiles in the healthy mice had a Chi square test p-value of 0.999, 
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while day 12 PK profiles had Chi square test p-value of 0.964. This indicated that the semi-

PBPK model successfully predicted the PK after GPI treatment In addition, AUC0–8h and 

clearance values of MDZ showed good agreement between predicted versus observed values 

for both the IV and PO MDZ administration. The mean observed values of the PK 

parameters and the 95% confidence interval were compared with the predicted PK parameter 

values. All the predicted PK parameters resided within the 95% confidence intervals of the 

observed data (Supplementary Figs. 7 and 8). In the case of PK predictions after PO dosing 

on day 12 (Fig. 4), a visual check showed that the data points after 4 h were not well 

correlated with the predicted profile. This was due to the lack of good terminal phase for the 

day 12 PO-PK profile.

Sensitivity Analysis

The Cmax was sensitive to both Vmax-1-OH-MDZ-Liver and Km-1-OH-MDZ-Liver after PO MDZ 

administration as demonstrated in the Supplementary Fig. 9. Cmax decreased with increasing 

Vm-1-OH-MDZ-Liver while increased with increasing Km-1-OH-MDZ-Liver.

In addition, altered values of Vmax-1-OH-MDZ-gw Vmax-NonCYP3A-MDZ-gw 

Km-NonCYP3A-MDZ-gw Fg and Fu,b lead to changes in Cmax and overall PK profile of MDZ 

after PO dosing as shown in the Supplementary Fig. 10.

Effect of GPI-Mediated Inflammation on Serum Cytokine Levels

The cytokine levels peaked on day 12 according to previous experiments (data not shown). 

In this study, the healthy mice had lower cytokine levels as compared to the day 12 GPI 

treated mice (Fig. 5). Since inflammation in this model remits over time (data not shown), 

the cytokine levels returned to the normal range by day 21, but did not full return to the pre-

study levels. Serum levels of various other cytokines (IL-2, IL-iβ, IL-10, IFN-γ) were not 

significantly elevated on day 12 after GPI treatment (data not shown). IL-6 levels in the GPI-

treated mice on day 12 were approximately 100-fold higher than that in the healthy mice (P 
≤ 0.0001). In addition, day 12 IL-6 levels were 5.4-fold higher than that on day 21 (P ≤ 

0.0001). However, healthy animal and day 21 IL-6 levels were not significantly different. 

Serum TNF-α levels were 2.6-fold higher in diseased animals on day 12 as compared to 

levels in the healthy mice (P ≤0.0001). Day 12 TNF-α levels were also higher (1.3-fold) 

than levels on day 21 (P ≤0.01). In the case of TNF-α, day 21 levels were 1.9-fold higher 

than healthy (P ≤ 0.0001).

Effect of GPI-Mediated Inflammation on Liver cyp3a11, cyp2c29 and cyp2d26 mRNA

The mRNA levels of cyp3all, cyp2c29, and cyp2d26 were normalized to the house-keeping 

gene PPIB (Fig. 6). Cyp2c66 mRNA was not found in this study, while cyp2c29 had the 

highest basal levels of mRNA expression followed by cyp3a11 and cyp2d26. The responses 

of cyp3al 1 and cyp2c29 to GPI-mediated inflammation were similar. The mRNA levels 

were highest on day 1 after GPI treatment, followed by a reduction in levels on day 5, and 

12 as compared to the baseline levels. However, in the case of cyp3al 1 and cyp2c29, day 8 

showed surprisingly increased mRNA levels. On day 15, mRNA levels appeared to increase 

but did not return to the baseline levels. The reduction of mRNA levels was notably highest 

on day 5. Cyp3al 1 mRNA on day 12 was suppressed by around 89% after the GPI 

Varkhede et al. Page 9

Pharm Res. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment. On day 12, cyp2c29 and cyp2d26 mRNA were suppressed by around 85 and 51%, 

respectively as compared to the day 1 levels.

DISCUSSION

In this study, the in vitro metabolism and PK of MDZ was studied to demonstrate 

suppression of the CYP activity in the GPI-treated animals, and a semi-PBPK model was 

generated using in vitro data from both the healthy and diseased animals. It was assumed 

that the 2-compartment IV parameters of the healthy and diseased mice were same. 

Therefore, the IV-PK data from the healthy mice were used to generate the 2-compartmental 

parameters for both of the groups. The 2-comparment model parameters for the disease-

animal IV data were also available and used for the model prediction (data not shown). 

However, this did not change the results significantly.

The GPI mouse model is frequently used to induce arthritis and study the anti-inflammatory 

activity of NCEs in the drug discovery process (9). In this study, the GPI-mediated 

inflammation increased serum proinflammatory cytokine levels in the DBA/1 mice. This 

result was in agreement with the previously published report (8). Several published in vitro 
and in moo models of inflammation showed that increased cytokines can lead to reduced 

CYP expression (10,11,36).

The GPI model showed highest degree of inflammation approximately on the day 12 and the 

inflammation decreased afterwards (data not shown). Therefore, the day 8-CYP mRNA 

levels should be lower as compared to the day 1-levels based on the disease state. Current 

study shows that the mean cyp3a11 and cyp2c29 mRNA levels on day 8 were surprisingly 

higher as compared to the day 5 and 12 (Fig. 6). However, the day 8-cyp3all mRNA levels 

were not significantly different when compared to the day 5 (p = 0.1) and day 12 (p = 0.13). 

In the case of cyp2c29 mRNA, day 8 and day 12 levels were not significantly different (p = 
0.054), however, the day 8 mRNA levels were significantly higher (p = 0.026) than the day 5 

(Unpaired T-test). Although the day 8 mRNA levels could not be completely explained, day 

12 data were more important for the comparison. Because, CYP mRNA and cytokine levels, 

in vitro metabolism and PK for day 12 after GPI treatment were available for day 12 after 

GPI treatment. Therefore, the conclusions were based on the day 12 data.

The IL-6 and TNF-α proinflammatory cytokine levels increased on day 12 after GPI 

treatment. Cyp3a11 levels decreased on day 5 and 12 after GPI treatment The reduction in 

Vmax-1OH-MDZ-Livcr (P≤ 0.0001) indicated that the CYP activity was suppressed. In this 

report, the GPI-mediated inflammation was studied based on increased cytokines, decreased 

CYP mRNAs, decreased in vitro metabolism, and decreased clearance of MDZ. The 

experimental data may be useful for future experiments with GPI-mediated mouse model of 

inflammation. Another in vitro study using human hepatocytes showed that IL-6 was 

responsible for suppression of various CYP-mRNA, including CYP3A4. In addition, 

activities of CYP3A4 and CYP1A2 were also suppressed (37). This suppression of CYPs 

may lead to alteration of PK of its substrates. Machavaram et al. used the in vitro data of 

IL-6-mediated CYP suppression in the PBPK model for prediction of disease-drug 

interactions involving elevated cytokine levels. As mentioned previously, serum cytokine 
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levels are increased in the inflammatory diseases. Although this elevation of cytokines in the 

patient population is highly variable and dependent on the disease stage, age, and sleep 

deprivation; it can still impact expression of CYPs (38). In addition, cytokine levels are 

altered due to administration of various therapeutic proteins. For example, blinatumomab, a 

bispecific antibody against CD 19, increased cytokines (particularly IL-6 and IL-10) to 

maximum levels, about six hours after administration (6). However, adalimumab, an anti-

TNF-a antibody, resulted in reduced levels of pro-inflammatory cytokines (TNF-α and IL-6) 

(39). Since elevated or reduced cytokine levels can alter the expression of different CYPs, 

these biologics have the potential to change the PK of the small molecule drugs that are 

metabolized by the CYPs, resulting in therapeutic protein- drug interactions (40).

Effect of alteration of the model parameters (Vmax, Km, Fg, Fu,b) on the PK profile was 

studied (Supplementary Figs. 9 and 10)-Cmax and AUC (data not shown) were the major PK 

parameter sensitive to the change in various model parameters. This indicates that the tested 

model parameters defined metabolism of MDZ in the liver and intestine and alteration of the 

values from the original parameter value may impact PK prediction of MDZ.

Plasma protein binding of MDZ is around 95%. Furthermore, the fraction unbound of MDZ 

was constant even with changing plasma drug concentration as reported earlier (41). 

Alteration of plasma proteins may have a significant impact on MDZ clearance assuming 

that the only unbound fraction of MDZ can be metabolized by CYP450 enzymes. A protein 

binding study with human serum albumin and α−1-acid glycoprotein solutions showed that 

MDZ was extensively bound to both (42). Glycosylation of α−1-acid glycoprotein was 

changed in patients with rheumatoid arthritis (43). These structural changes in the protein 

may lead to altered binding with drugs. In another report, plasma albumin levels decreased 

in patients with the inflammatory disease (arthritis). In addition, α−1-acid glycoprotein level 

increased in the arthritis patients as compared to the healthy control group. The authors also 

reported changes in the plasma protein binding of propranolol and chlorpromazine in the 

arthritis patients to establish correlation between changes in plasma protein levels and 

protein binding of the drugs (44). Therefore, it was pertinent to investigate MDZ protein 

binding in healthy and GPI-treated mice with inflammation. However, MDZ plasma protein 

binding was same for the healthy and diseased animals (Table IV). This eliminated the 

possibility of altered plasma protein levels contributing to differences in clearance for the 

healthy and diseased mice.

The ‘Well-Stirred’ model (eq. 3) of gut (31) was used to calculate fu,g using literature values 

of Qgw, Vmax-1-OH-MDZ-gw, Km-1-OH-MDZ-gw) and Fg (Table IV and V). After PO 

administration, MDZ is well absorbed (Fa = 1) (21). Therefore, low bioavailability (F = 
0.062) of MDZ after PO administration may be attributed to the intestinal metabolism. As 

mentioned in the previous section, in vitro data were not available to define metabolism in 

the intestines, and hence literature values were used instead (27). In addition, non-CYP3A 

metabolism of MDZ was defined by the parameters (Vmax-nonCYP3A-MNZ-gw and 

Km-nonCYP3A-MDZ-gw) estimated using the semi-PBPK model and healthy-animal PK data.

The 1-OH-MDZ and 4-OH-MDZ are important metabolites of MDZ (13,15). In a mass 

balance study in humans using radioactive MDZ, 60–70% of administered dose was 
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eliminated via renal route as 1-OH-MDZ-glucuronide, while 4-OH-MDZ and 1,4-diOH-

MDZ were ~3 and ~ 1%, respectively. Urinary excretion of unchanged MDZ was negligible 

(45). Another study used rats to show that 81% of the administered dose was recovered in 

the feces, while 10% was recovered in the urine (46). In addition, urinary excretion of MDZ 

had < 1% contribution according to a clinical study (47). Therefore, in this study, renal 

clearance of MDZ was excluded from the model. The model substrate MDZ, is mainly 

cleared via hepatic metabolism. For other drugs with minimum or no hepatic metabolism 

where renal elimination is a major route of clearance, the semi-PBPK model may not be 

appropriate or may need modifications to account for non-hepatic metabolism and renal 

elimination. In addition, the model would require PK data generated in the healthy animals 

and hepatic in vitro microsomal metabolism data obtained using both the healthy and 

diseased mice.

Overall, the model successfully predicted MDZ PK in the disease condition. The model may 

be useful to predict PK of other CYP substrates in the mice with GPI-mediated 

inflammation. In the drug discovery process, dose selection for the preclinical disease 

models is usually done using PK data in the healthy animals. The healthy animal PK data 

may not accurately predict the impact of inflammation or other diseases on the PK of NCEs. 

The semi-PBPK model may be useful to predict doses for achieving targeted exposure 

during GPI- mediated inflammation. The model and in vitro data were used to demonstrate 

this approach of PK prediction. However, the proposed framework of the semi-PBPK model 

may also be extended to other inflammation models and disease conditions, provided 

availability of minimal healthy animal PK and in vitro metabolism data that assumes 

clearance via CYPs.

CONCLUSION

The in vitro hepatic metabolism, and PK of MDZ were studied during the GPI-mediated 

inflammation in mice. In addition, serum cytokine levels and hepatic CYP mRNA during 

GPI-mediated inflammation were examined. The semi-PBPK model predicted PK of MDZ 

in the diseased state. The model may be used to select doses for mice with GPI-mediated 

inflammation in order to achieve targeted exposure by correcting for suppression of 

metabolism due to inflammation. This model may also be used for PK prediction of other 

drugs after GPI-mediated inflammation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

CAR Constitutive androstane receptor

CYP Cytochrome P450

DBS Dried blood spot

GPI Glucose-6-phosphate isomerase

HNF-4α Hepatic nudear factor-4α

HLM Human liver microsomes

IV Intravenous

LC-MS Liquid Chromatography-Mass Spectrometry

MDZ Midazolam

MLM Mouse liver microsomes

NCA Non-compartmental analysis

NCE New chemical entity

PBPK Physiologically based pharmacokinetic

PK Pharmacokinetics

PO Oral

PXR Pregnane X receptor

qPCR Quantitative polymerase chain reaction

SCID Severe combined immune deficient
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Fig. 1. 
Schematic representation of the semi-PBPK model.
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Fig. 2. 
Rate of metabolite formation with increasing MDZ concentration in MLM prepared from 

the healthy and GPI-treated mice a) 1-OH-MDZ and b) 4-OH-MDZ. MLM were prepared 
using livers collected from the healthy mice and on day 12 after GPI treatment. Lines 
indicate fitted metabolite formation kinetics. Experimental values are represented as filled 
circles or squares with standard deviation. (n = 3).
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Fig. 3. 
Observed pharmacokinetic profiles for a) IV (1 mg/kg) and b) PO (5 mg/kg) MDZ 

administration. Observed MDZ PK represeted as filled circles or squares with standard 
deviation (n = 4).
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Fig. 4. 
Observed and the model predicted PK profiles for a) IV (1 m/kg) and b) PO (5 mg/kg). The 
observed values represented as mean and standard deviation.
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Fig. 5. 
Box-plot representation of the serum cytokine levels and statistical comparison for healthy 

mice, day 12 and day 21 after GPI treatment to mice, a) IL-6 and b) TNF-α. Box-plot 
showing first and third quartiles, mean and renge. NS: Not Significant, ****:P ≤ 
0.0001,**:P ≤0.01 (ANOVA and Tukey’s test)
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Fig. 6. 
Box-plot representation of a) cyp3a11, b) cyp2c29 and c) cyp2d26 mRNA levels in mouse 

livers on day 1, 5, 8, 12, and 15 after GPI treatment. Box-plot showing first and third 
quartiles, mean and range. NS: Not significant, *: P ≤ 0.05, **: P ≤ 0.01 (Unpaired T-test 
was used to compare mRNA levels on day 1 and day 12).
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