9 research outputs found

    Effects of spoilage on nitrogen and carbon stable isotopes signatures of the clam Ruditapes decussatus

    Get PDF
    Fish and seafood products are highly susceptible to post-mortem spoilage due to autolytic reactions at start, then microbiological activity and eventually oxidative reactions. Chemical and microbiological parameters are usually used to assess quality and make decisions for protecting public health, but they lack precision in defining which spoilage pathway is occurring at each moment. The objective of this work was to assess the effects of spoilage reactions on nitrogen and carbon stable isotopes in the grooved carpet shell clam, Ruditapes decussatus, and compare them to biochemical indicators of seafood deterioration, in order to better understand the relations between the different spoilage pathways during commercial storage conditions. Clams were kept in a refrigerator at 5 ÂşC, to simulate normal commercial storage conditions, and sampled in the beginning of the experiment, and after eight, ten and twelve days. Moisture, condition index, percentage edibility, total volatile basic nitrogen (TVB-N), pH, nitrogen and carbon percentages and stable isotopes were determined for each sampling moment. Stable isotope analyses were performed using a Costech Elemental Analyzer (ECS 4010) coupled to a ThermoFinnigan Delta V Advantage. Stable isotopes analysis, especially for nitrogen, proved to be a good tool for the study of clam deterioration. Nitrogen stable isotopes results showed a relation with other spoilage indicators, such as pH and TVB-N, and allowed identifying spoilage specific pathways, such as amino acids decarboxylation and production of volatile nitrogen compounds.info:eu-repo/semantics/publishedVersio

    Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon

    Get PDF
    The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT
    corecore