2,827 research outputs found
Overcoming change fatigue: lessons from Glasgow's National Health Service
Structured Abstract
Purpose of this paper
This paper explores the practicalities of organizational change in complex settings where much change has already occurred. It therefore offers insights into tackling and overcoming change fatigue.
Design/methodology/approach
The paper uses a longitudinal study of change within a healthcare organization. The paper draws on interviews, focus groups and observations during a 2.5 year long action research project.
Findings
The paper reports findings on the speed at which change takes place, the importance of communication and the burden placed on senior officers during such communication and consultation processes, the use of appropriate external resources and expertise, the benefits of sharing best practice across sectors and the role of academic researchers in change processes.
What is original/value of paper
The paper offers valuable insights to those charged with effecting organizational change in change fatigued settings
Angular Differential Imaging: a Powerful High-Contrast Imaging Technique
Angular differential imaging is a high-contrast imaging technique that
reduces quasi-static speckle noise and facilitates the detection of nearby
companions. A sequence of images is acquired with an altitude/azimuth telescope
while the instrument field derotator is switched off. This keeps the instrument
and telescope optics aligned and allows the field of view to rotate with
respect to the instrument. For each image, a reference PSF is constructed from
other appropriately-selected images of the same sequence and subtracted to
remove quasi-static PSF structure. All residual images are then rotated to
align the field and are combined. Observed performances are reported for Gemini
North data. It is shown that quasi-static PSF noise can be reduced by a factor
\~5 for each image subtraction. The combination of all residuals then provides
an additional gain of the order of the square root of the total number of
acquired images. A total speckle noise attenuation of 20-50 is obtained for
one-hour long observing sequences compared to a single 30s exposure. A PSF
noise attenuation of 100 was achieved for two-hour long sequences of images of
Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than
8". For a 30-minute long sequence, ADI achieves 30 times better signal-to-noise
than a classical observation technique. The ADI technique can be used with
currently available instruments to search for ~1MJup exoplanets with orbits of
radii between 50 and 300 AU around nearby young stars. The possibility of
combining the technique with other high-contrast imaging methods is briefly
discussed.Comment: 27 pages, 7 figures, accepted for publication in Ap
The Structure of High Strehl Ratio Point-Spread Functions
We describe the symmetries present in the point-spread function (PSF) of an
optical system either located in space or corrected by an adaptive o to Strehl
ratios of about 70% and higher. We present a formalism for expanding the PSF to
arbitrary order in terms of powers of the Fourier transform of the residual
phase error, over an arbitrarily shaped and apodized entrance aperture. For
traditional unapodized apertures at high Strehl ratios, bright speckles pinned
to the bright Airy rings are part of an antisymmetric perturbation of the
perfect PSF, arising from the term that is first order in the residual phase
error. There are two symmetric second degree terms. One is negative at the
center, and, like the first order term, is modulated by the perfect image's
field strength -- it reduces to the Marechal approximation at the center of the
PSF. The other is non-negative everywhere, zero at the image center, and can be
responsible for an extended halo -- which limits the dynamic range of faint
companion detection in the darkest portions of the image. In regimes where one
or the other term dominates the speckles in an image, the symmetry of the
dominant term can be exploited to reduce the effect of those speckles,
potentially by an order of magnitude or more. We demonstrate the effects of
both secondary obscuration and pupil apodization on the structure of residual
speckles, and discuss how these symmetries can be exploited by appropriate
telescope and instrument design, observing strategies, and filter bandwidths to
improve the dynamic range of high dynamic range AO and space-based
observations. Finally, we show that our analysis is relevant to high dynamic
range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure
Direct Imaging of Multiple Planets Orbiting the Star HR 8799
Direct imaging of exoplanetary systems is a powerful technique that can
reveal Jupiter-like planets in wide orbits, can enable detailed
characterization of planetary atmospheres, and is a key step towards imaging
Earth-like planets. Imaging detections are challenging due to the combined
effect of small angular separation and large luminosity contrast between a
planet and its host star. High-contrast observations with the Keck and Gemini
telescopes have revealed three planets orbiting the star HR 8799, with
projected separations of 24, 38, and 68 astronomical units. Multi-epoch data
show counter-clockwise orbital motion for all three imaged planets. The low
luminosity of the companions and the estimated age of the system imply
planetary masses between 5 and 13 times that of Jupiter. This system resembles
a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science
Express Nov 13th, 200
Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements
We present new astrometric measurements from our ongoing monitoring campaign
of the HR 8799 directly imaged planetary system. These new data points were
obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and
2014. In addition, we present updated astrometry from previously published
observations in 2007 and 2008. All data were reduced using the SOSIE algorithm,
which accounts for systematic biases present in previously published
observations. This allows us to construct a self-consistent data set derived
entirely from NIRC2 data alone. From this dataset, we detect acceleration for
two of the planets (HR 8799b and e) at 3. We also assess possible
orbital parameters for each of the four planets independently. We find no
statistically significant difference in the allowed inclinations of the
planets. Fitting the astrometry while forcing coplanarity also returns
consistent to within 1 of the best fit values, suggesting that if
inclination offsets of 20 are present, they are not detectable
with current data. Our orbital fits also favor low eccentricities, consistent
with predictions from dynamical modeling. We also find period distributions
consistent to within 1 with a 1:2:4:8 resonance between all planets.
This analysis demonstrates the importance of minimizing astrometric systematics
when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A
Characterizing Earth Analogs in Reflected Light: Atmospheric Retrieval Studies for Future Space Telescopes
Space-based high contrast imaging mission concepts for studying rocky
exoplanets in reflected light are currently under community study. We develop
an inverse modeling framework to estimate the science return of such missions
given different instrument design considerations. By combining an exoplanet
albedo model, an instrument noise model, and an ensemble Markov chain Monte
Carlo sampler, we explore retrievals of atmospheric and planetary properties
for Earth twins as a function of signal-to-noise ratio (SNR) and resolution
(). Our forward model includes Rayleigh scattering, single-layer water
clouds with patchy coverage, and pressure-dependent absorption due to water
vapor, oxygen, and ozone. We simulate data at and from
0.4-1.0 m with SNR at 550 nm (i.e., for
HabEx/LUVOIR-type instruments). At these same SNR, we simulate data for WFIRST
paired with a starshade, which includes two photometric points between 0.48-0.6
m and spectroscopy from 0.6-0.97 m. Given our noise model
for WFIRST-type detectors, we find that weak detections of water vapor, ozone,
and oxygen can be achieved with observations with at least / SNR, or / SNR for improved detections. Meaningful constraints
are only achieved with / SNR data. The WFIRST data offer
limited diagnostic information, needing at least SNR = 20 to weakly detect
gases. Most scenarios place limits on planetary radius, but cannot constrain
surface gravity and, thus, planetary mass.Comment: Resubmitted to AAS Journals after incorporating reviewer feedback. 26
pages, 18 figure, 9 table
The VAST Survey - IV. A wide brown dwarf companion to the A3V star Delphini
We report the discovery of a wide co-moving substellar companion to the
nearby ( pc) A3V star Delphini based on imaging and
follow-up spectroscopic observations obtained during the course of our
Volume-limited A-Star (VAST) multiplicity survey. Del was observed over
a five-year baseline with adaptive optics, revealing the presence of a
previously-unresolved companion with a proper motion consistent with that of
the A-type primary. The age of the Del system was estimated as
Myr based on the position of the primary on the colour-magnitude
and temperature-luminosity diagrams. Using intermediate-resolution
near-infrared spectroscopy, the spectrum of Del B is shown to be
consistent with a mid-L dwarf (L), at a temperature of K.
Combining the measured near-infrared magnitude of Del B with the
estimated temperature leads to a model-dependent mass estimate of
M, corresponding to a mass ratio of . At a
projected separation of au, Del B is among the most
widely-separated and extreme-mass ratio substellar companions to a
main-sequence star resolved to-date, providing a rare empirical constraint of
the formation of low-mass ratio companions at extremely wide separations.Comment: 12 pages, 11 figures, accepted for publication in the Monthly Notices
of the Royal Astronomical Society, 2014 September 25. Revised to incorporate
typographical errors noted during the proofing proces
Experimental Design for the Gemini Planet Imager
The Gemini Planet Imager (GPI) is a high performance adaptive optics system
being designed and built for the Gemini Observatory. GPI is optimized for high
contrast imaging, combining precise and accurate wavefront control, diffraction
suppression, and a speckle-suppressing science camera with integral field and
polarimetry capabilities. The primary science goal for GPI is the direct
detection and characterization of young, Jovian-mass exoplanets. For plausible
assumptions about the distribution of gas giant properties at large semi-major
axes, GPI will be capable of detecting more than 10% of gas giants more massive
than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For
systems younger than 1 Gyr, gas giants more massive than 8 M_J and with
semi-major axes greater than 15 AU are detected with completeness greater than
50%. A survey targeting young stars in the solar neighborhood will help
determine the formation mechanism of gas giant planets by studying them at ages
where planet brightness depends upon formation mechanism. Such a survey will
also be sensitive to planets at semi-major axes comparable to the gas giants in
our own solar system. In the simple, and idealized, situation in which planets
formed by either the "hot-start" model of Burrows et al. (2003) or the core
accretion model of Marley et al. (2007), a few tens of detected planets are
sufficient to distinguish how planets form.Comment: 15 pages, 9 figures, revised after referee's comments and resubmitted
to PAS
The VAST Survey - III. The multiplicity of A-type stars within 75 pc
With a combination of adaptive optics imaging and a multi-epoch common proper
motion search, we have conducted a large volume-limited (D 75 pc)
multiplicity survey of A-type stars, sensitive to companions beyond 30 au. The
sample for the Volume-limited A-STar (VAST) survey consists of 435 A-type
stars: 363 stars were observed with adaptive optics, 228 stars were searched
for wide common proper motion companions and 156 stars were measured with both
techniques. The projected separation coverage of the VAST survey extends from
30 to 45,000 au. A total of 137 stellar companions were resolved, including 64
new detections from the VAST survey, and the companion star fraction, projected
separation distribution and mass ratio distribution were measured. The
separation distribution forms a log-normal distribution similar to the
solar-type binary distribution, but with a peak shifted to a significantly
wider value of 387 (+132,-98) au. Integrating the fit to the distribution over
the 30 to 10,000 au observed range, the companion star fraction for A-type
stars is estimated as 33.8%+-2.6%. The mass ratio distribution of closer (<125
au) binaries is distinct from that of wider systems, with a flat distribution
for close systems and a distribution that tends towards smaller mass ratios for
wider binaries. Combining this result with previous spectroscopic surveys of
A-type stars gives an estimate of the total companion star fraction of
68.9%+-7.0%. The most complete assessment of higher order multiples was
estimated from the 156-star subset of the VAST sample with both adaptive optics
and common proper motion measurements, combined with a literature search for
companions, yielding a lower limit on the frequency of single, binary, triple,
quadruple and quintuple A-type star systems of 56.4 (-4.0,+3.8), 32.1
(-3.5,+3.9), 9.0 (-1.8,+2.8), 1.9 (-0.6,+1.8) and 0.6 (-0.2,+1.4) per cent,
respectively.Comment: 46 pages, 24 figures. Accepted for publication in the Monthly Notices
of the Royal Astronomical Society, 7th October 201
- …
