353 research outputs found

    Oxygen supersaturation mitigates the impact of the regime of contaminated sediment reworking on sea urchin fertilization process

    Get PDF
    Dismissed industrial plants with chronic environmental contamination globally affect all levels of biological organization in concert with other natural and anthropogenic perturbations. Assessing the impact of such perturbations and finding effective ways to mitigate them have clear ecological and societal implications. Through indoor manipulative experiments, we assessed here the effects of the temporal regime of reworking of contaminated sediment from the Bagnoli-Coroglio brownfield (Tyrrhenian Sea, Italy) on the fertilization process in Paracentrotus lividus. Adult sea urchins were kept for one month in tanks containing contaminated sediment that was re-suspended according to two temporal patterns of water turbulence differing in the time intervals between consecutive events of agitation (mimicking the storms naturally occurring in the study area) in seawater with natural vs. supersaturated oxygenation levels. At the end of the treatment, gametes were collected and used to test the hypothesis that the regime of contaminated sediment reworking negatively, but reversibly, affects morphological and physiological traits of the fertilized eggs. We found that aggregated events of sediment re-suspension had profound negative effects on gamete interactions and Ca2+ signaling at fertilization. The same experimental condition also inflicted marked ultrastructural changes in eggs. Importantly, however, such detrimental effects were inhibited by increased oxygenation. By contrast, the regime of sediment re-working with a longer interval between consecutive turbulent events had only marginal effects. Thus, the current and predicted changes of climate-related disturbance appear to modulate the biological effects of chronic contamination in post-industrial areas, suggesting that environmental rehabilitation via restoration of habitat-forming primary producers such as seagrasses or algal canopies could alleviate the pollutants’ effects on resident biota

    Effects of Ionomycin on Egg Activation and Early Development in Starfish

    Get PDF
    Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation

    A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell

    Get PDF
    Cytosolic calcium machinery is one of the principal signaling mechanisms by which endothelial cells (ECs) respond to external stimuli during several biological processes, including vascular progression in both physiological and pathological conditions. Low concentrations of angiogenic factors (such as VEGF) activate in fact complex pathways involving, among others, second messengers arachidonic acid (AA) and nitric oxide (NO), which in turn control the activity of plasma membrane calcium channels. The subsequent increase in the intracellular level of the ion regulates fundamental biophysical properties of ECs (such as elasticity, intrinsic motility, and chemical strength), enhancing their migratory capacity. Previously, a number of continuous models have represented cytosolic calcium dynamics, while EC migration in angiogenesis has been separately approached with discrete, lattice-based techniques. These two components are here integrated and interfaced to provide a multiscale and hybrid Cellular Potts Model (CPM), where the phenomenology of a motile EC is realistically mediated by its calcium-dependent subcellular events. The model, based on a realistic 3-D cell morphology with a nuclear and a cytosolic region, is set with known biochemical and electrophysiological data. In particular, the resulting simulations are able to reproduce and describe the polarization process, typical of stimulated vascular cells, in various experimental conditions.Moreover, by analyzing the mutual interactions between multilevel biochemical and biomechanical aspects, our study investigates ways to inhibit cell migration: such strategies have in fact the potential to result in pharmacological interventions useful to disrupt malignant vascular progressio
    corecore