41,598 research outputs found

    Bott-Kitaev Periodic Table and the Diagonal Map

    Full text link
    Building on the 10-way symmetry classification of disordered fermions, the authors have recently given a homotopy-theoretic proof of Kitaev's "Periodic Table" for topological insulators and superconductors. The present paper offers an introduction to the physical setting and the mathematical model used. Basic to the proof is the so-called Diagonal Map, a natural transformation akin to the Bott map of algebraic topology, which increases by one unit both the momentum-space dimension and the symmetry index of translation-invariant ground states of gapped free-fermion systems. This mapping is illustrated here with a few examples of interest.Comment: Based on a talk delivered by the senior author at the Nobel Symposium on "New Forms of Matter: Topological Insulators and Superconductors" (Stockholm, June 13-15, 2014

    3,4-dimethylphenyl benzoate

    Get PDF
    In the title compound, C15H14O2, the terminal rings form a dihedral angle of 52.39(4)°. The mean plane of the central ester group [r.m.s. deviation = 0.0488Å] is twisted away from the benzene and phenyl rings by 60.10(4) and 8.67(9)°, respectively. In the crystal, molecules are linked by weak C - HO hydrogen bonds, forming C(6) chains which run along [100]

    Report on the development of the Manned Orbital Research Laboratory /MORL/ system utilization potential. Task area IV - MORL SYSTEM improvement study, book 2

    Get PDF
    Environmental control and life support systems analyses for improved Manned Orbital Research Laborator

    Emulation of multivariate simulators using thin-plate splines with application to atmospheric dispersion

    No full text
    It is often desirable to build a statistical emulator of a complex computer simulator in order to perform analysis which would otherwise be computationally infeasible. We propose methodology to model multivariate output from a computer simulator taking into account output structure in the responses. The utility of this approach is demonstrated by applying it to a chemical and biological hazard prediction model. Predicting the hazard area which results from an accidental or deliberate chemical or biological release is imperative in civil and military planning and also in emergency response. The hazard area resulting from such a release is highly structured in space and we therefore propose the use of a thin-plate spline to capture the spatial structure and fit a Gaussian process emulator to the coefficients of the resultant basis functions. We compare and contrast four different techniques for emulating multivariate output: dimension-reduction using (i) a fully Bayesian approach with a principal component basis, (ii) a fully Bayesian approach with a thin-plate spline basis, assuming that the basis coefficients are independent, and (iii) a “plug-in” Bayesian approach with a thin-plate spline basis and a separable covariance structure; and (iv) a functional data modeling approach using a tensor-product (separable) Gaussian process. We develop methodology for the two thin-plate spline emulators and demonstrate that these emulators significantly outperform the principal component emulator. Further, the separable thin-plate spline emulator, which accounts for the dependence between basis coefficients, provides substantially more realistic quantification of uncertainty, and is also computationally more tractable, allowing fast emulation. For high resolution output data, it also offers substantial predictive and computational ad- vantages over the tensor-product Gaussian process emulator

    Mission oriented study of advanced nuclear system parameters, phase 6. Volume 1 - Summary technical report Final report

    Get PDF
    Summarized study tasks, analyses, and results of advanced nuclear propulsion parameters for Mars and Venus mission

    Star - Planet - Debris Disk Alignment in the HD 82943 system: Is planetary system coplanarity actually the norm?

    Get PDF
    Recent results suggest that the two planets in the HD 82943 system are inclined to the sky plane by 20 +/- 4deg. Here, we show that the debris disk in this system is inclined by 27 +/- 4deg, thus adding strength to the derived planet inclinations and suggesting that the planets and debris disk are consistent with being aligned at a level similar to the Solar System. Further, the stellar equator is inferred to be inclined by 28 +/- 4deg, suggesting that the entire star - planet - disk system is aligned, the first time such alignment has been tested for radial velocity discovered planets on ~AU wide orbits. We show that the planet-disk alignment is primordial, and not the result of planetary secular perturbations to the disk inclination. In addition, we note three other systems with planets at >10AU discovered by direct imaging that already have good evidence of alignment, and suggest that empirical evidence of system-wide star - planet - disk alignment is therefore emerging, with the exception of systems that host hot Jupiters. While this alignment needs to be tested in a larger number of systems, and is perhaps unsurprising, it is a reminder that the system should be considered as a whole when considering the orientation of planetary orbits.Comment: Accepted to MNRA

    Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    Get PDF
    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing

    System configuration and executive requirements specifications for reusable shuttle and space station/base

    Get PDF
    System configuration and executive requirements specifications for reusable shuttle and space station/bas

    Stripe phases in the two-dimensional Falicov-Kimball model

    Full text link
    The observation of charge stripe order in the doped nickelate and cuprate materials has motivated much theoretical effort to understand the underlying mechanism of the stripe phase. Numerical studies of the Hubbard model show two possibilities: (i) stripe order arises from a tendency toward phase separation and its competition with the long-range Coulomb interaction or (ii) stripe order inherently arises as a compromise between itinerancy and magnetic interactions. Here we determine the restricted phase diagrams of the two-dimensional Falicov-Kimball model and see that it displays rich behavior illustrating both possibilities in different regions of the phase diagram.Comment: (5 pages, 3 figures
    corecore