3,922 research outputs found

    Measurements of ion-molecule reactions of He plus, H plus, HeH plus with H sub 2 and D sub 2

    Get PDF
    A drift tube mass spectrometer apparatus has been used to determine the rate coefficient, energy dependence and product ions of the reaction He(+) +H2. The total rate coefficient at 300 K is 1.1 plus or minus 0.1) 10 to minus 13th power cu cm/sec. The reaction proceeds principally by dissociative charge transfer to produce H(+), with the small remainder going by charge transfer to produce H2(+) and by atom rearrangement to produce HeH(+). The rate coefficient increases slowly with increasing ion mean energy, reaching a value of 2.8 x ten to the minus 13th power cu cm sec at 0.18 eV. The corresponding reaction with deuterium, He(+) + D2, exhibits a value (5 plus or minus 1) x 10 to the minus 14th cu cm/sec at 300K. The reaction rates for conversion of H(+) and HeH(+) to H3(+) on collisions with H2 molecules are found to agree well with results of previous investigations

    Mobilities of uranium and mercury ions in helium

    Get PDF
    The mobilities of mass-identified U(+) and Hg (+) ions in helium were determined in a drift tube-mass spectrometer. For uranium ions, a reduced mobility value is obtained at 305 K and a standard gas density of 2.69 x 10 to the 19th power/cu cm. The mobility of mercury ions is in agreement with two previous determinations. The effect of fast ion injection in drift mobility measurements is discussed, and a technique to circumvent these problems is described. The results are compared with existing theories of ion mobilities

    Electron-temperature dependence of dissociative recombination of electrons with CO(+)-(CO)n-series ions

    Get PDF
    A microwave afterglow mass spectrometer apparatus is used to determine the dependence on electron temperature T sub e of the recombination coefficients alpha sub n of the dimer and trimer ions of the series CO+.(CO) sub n. It is found that alpha sub 1 = (1.3 + or - 0.3)x 0.000001 (T sub e(K)/300) to the -0.34; and alpha sub 2 = (1.9 + or - 0.4)x 0.000001 (T sub e(K)/300) to the -0.33 cu cm/sec. These dependences on T sub e are quite different from those obtained previously for polar-cluster ions of the hydronium and ammonium series but are similar to that for simple diatomic ions

    Measurements of the O+ plus N2 and O+ plus O2 reaction rates from 300 to 900 K

    Get PDF
    Rate coefficients for the O(+) + N2 atom transfer and O(+) + O2 charge transfer reactions are determined at thermal energies between 300 K and 900 K difference in a heated drift tube mass spectrometer apparatus. At 300 K the values K(O(+) + N2) = (1.2 plus or minus 0.1) x 10 to the negative 12 power cubic cm/sec and k(O(+) + O2) = (2.1 plus or minus 0.2) x 10 to the negative 11 power cubic cm/sec were obtained, with a 50% difference decrease in the reaction rates upon heating to 700 K. These results are in good agreement with heated flowing afterglow results, but the O(+) + O2 thermal rate coefficients are systematically lower than equivalent Maxwellian rates inferred by conversion of nonthermal drift tube and flow drift data

    Measurements of recombination of electrons with H3(plus) and H5(plus) ions

    Get PDF
    The electron-ion recombination coefficients for H3(+) and H5(+) ions were determined by means of a microwave afterglow/mass spectrometer apparatus. Measurements of electron density decays in helium-hydrogen mixtures are correlated with the decay of mass-identified ion currents to the wall of the microwave cavity. At low partial pressures of hydrogen in the mixture, the ion H3(+) dominates the ion composition and the ion wall current tracks the electron density decay curves. From recombination controlled electron density decay curves, the values alpha (H3(+)) = (2.9 + or - 0.3), (2.3 + or - 0.3), and (2.0 + or - 0.2) x 0.0000001 cu cm per sec, are obtained at 205, 300 and 450 K, respectively. At higher partial pressures of hydrogen and low temperatures, where (H5(+)) is the dominant ion, the value alpha (H5(+)) = (3.6 + or - 1.0) x 0.0000001 cu cm per sec is obtained at 205 K. The implications of these results concerning ionization levels in the atmospheres of the outer planets and in the interstellar medium are discussed

    Reactions of Na/plus/, K/plus/, and Ba/plus/ ions with O2, NO, and H2O molecules

    Get PDF
    Investigating ion molecule reactions of sodium, potassium, and barium ions with oxygen, nitric oxide, and water in drift tube mass spectromete

    Recombination of H(3+) and D(3+) ions with electrons

    Get PDF
    Flowing-afterglow measurements in decaying H3(+) or D3(+) plasmas suggest that de-ionization does not occur by simple binary recombination of a single ion species. We find that vibrational excitation of the ions fails to provide an explanation for the effect, contrary to an earlier suggestion. Instead, we suggest that collisional stabilization of H3** Rydberg molecules by ambient electrons introduces an additional dependence on electron density. The proposed mechanism would permit plasma de-ionization to occur without the need for dissociative recombination by the mechanism of potential-surface crossings

    Spectral Sensitivity in Ray-Finned Fishes: Diversity, Ecology and Shared Descent

    Get PDF
    A major goal of sensory ecology is to identify factors that underlie sensory-trait variation. One open question centers on why fishes show the greatest diversity among vertebrates in their capacity to detect color (i.e. spectral sensitivity). Over the past several decades, λmax values (photoreceptor class peak sensitivity) and chromacy (photoreceptor class number) have been cataloged for hundreds of fish species, yet the ecological basis of this diversity and the functional significance of high chromacy levels (e.g. tetra- and pentachromacy) remain unclear. In this study, we examined phylogenetic, physiological and ecological patterns of spectral sensitivity of ray-finned fishes (Actinoptergyii) via a meta-analysis of data compiled from 213 species. Across the fishes sampled, our results indicate that trichromacy is most common, ultraviolet λmax values are not found in monochromatic or dichromatic species, and increasing chromacy, including from tetra- to pentachromacy, significantly increases spectral sensitivity range. In an ecological analysis, multivariate phylogenetic latent liability modeling was performed to analyze correlations between chromacy and five hypothesized predictors (depth, habitat, diet, body coloration, body size). In a model not accounting for phylogenetic relatedness, each predictor with the exception of habitat significantly correlated with chromacy: a positive relationship in body color and negative relationships with body size, diet and depth. However, after phylogenetic correction, the only remaining correlated predictor was depth. The findings of this study indicate that phyletic heritage and depth are important factors in fish spectral sensitivity and impart caution about excluding phylogenetic comparative methods in studies of sensory trait variation

    Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation

    Get PDF
    Scots pine (Pinus sylvestris L.) is a foundation species in Scottish highland forests and a national icon. Due to heavy exploitation, the current native pinewood coverage represents a small fraction of the postglacial maximum. To reverse this decline, various schemes have been initiated to promote planting of new and expansion of old pinewoods. This includes the designation of seed zones for control of the remaining genetic resources. The zoning was based mainly on biochemical similarity among pinewoods but, by definition, neutral molecular markers do not reflect local phenotypic adaptation. Environmental variation within Scotland is substantial and it is not yet clear to what extent this has shaped patterns of adaptive differentiation among Scottish populations. Systematic, rangewide common-environment trials can provide insights into the evolution of the native pinewoods, indicating how environment has influenced phenotypic variation and how variation is maintained. Careful design of such experiments can also provide data on the history and connectivity among populations, by molecular marker analysis. Together, phenotypic and molecular datasets from such trials can provide a robust basis for refining seed transfer guidelines for Scots pine in Scotland and should form the scientific basis for conservation action on this nationally important habitat
    corecore