49 research outputs found

    Cerulean: A hybrid assembly using high throughput short and long reads

    Full text link
    Genome assembly using high throughput data with short reads, arguably, remains an unresolvable task in repetitive genomes, since when the length of a repeat exceeds the read length, it becomes difficult to unambiguously connect the flanking regions. The emergence of third generation sequencing (Pacific Biosciences) with long reads enables the opportunity to resolve complicated repeats that could not be resolved by the short read data. However, these long reads have high error rate and it is an uphill task to assemble the genome without using additional high quality short reads. Recently, Koren et al. 2012 proposed an approach to use high quality short reads data to correct these long reads and, thus, make the assembly from long reads possible. However, due to the large size of both dataset (short and long reads), error-correction of these long reads requires excessively high computational resources, even on small bacterial genomes. In this work, instead of error correction of long reads, we first assemble the short reads and later map these long reads on the assembly graph to resolve repeats. Contribution: We present a hybrid assembly approach that is both computationally effective and produces high quality assemblies. Our algorithm first operates with a simplified version of the assembly graph consisting only of long contigs and gradually improves the assembly by adding smaller contigs in each iteration. In contrast to the state-of-the-art long reads error correction technique, which requires high computational resources and long running time on a supercomputer even for bacterial genome datasets, our software can produce comparable assembly using only a standard desktop in a short running time.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Safe and complete contig assembly via omnitigs

    Full text link
    Contig assembly is the first stage that most assemblers solve when reconstructing a genome from a set of reads. Its output consists of contigs -- a set of strings that are promised to appear in any genome that could have generated the reads. From the introduction of contigs 20 years ago, assemblers have tried to obtain longer and longer contigs, but the following question was never solved: given a genome graph GG (e.g. a de Bruijn, or a string graph), what are all the strings that can be safely reported from GG as contigs? In this paper we finally answer this question, and also give a polynomial time algorithm to find them. Our experiments show that these strings, which we call omnitigs, are 66% to 82% longer on average than the popular unitigs, and 29% of dbSNP locations have more neighbors in omnitigs than in unitigs.Comment: Full version of the paper in the proceedings of RECOMB 201

    Meraculous: De Novo Genome Assembly with Short Paired-End Reads

    Get PDF
    We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ∼280 bp or ∼3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed

    Assembly complexity of prokaryotic genomes using short reads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>De Bruijn graphs are a theoretical framework underlying several modern genome assembly programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to analyze the global repeat structure of prokaryotic genomes.</p> <p>Results</p> <p>We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an upper-bound on the performance of genome assemblers for <it>de novo </it>reconstruction of genomes across a wide range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages).</p> <p>Conclusions</p> <p>Our results improve upon previous studies on the feasibility of assembly with short reads and provide a comprehensive benchmark against which to compare the performance of the short-read assemblers currently being developed.</p

    Genetic diversity analysis of common beans based on molecular markers

    Get PDF
    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation

    Major prospects for exploring canine vector borne diseases and novel intervention methods using 'omic technologies

    Get PDF
    Canine vector-borne diseases (CVBDs) are of major socioeconomic importance worldwide. Although many studies have provided insights into CVBDs, there has been limited exploration of fundamental molecular aspects of most pathogens, their vectors, pathogen-host relationships and disease and drug resistance using advanced, 'omic technologies. The aim of the present article is to take a prospective view of the impact that next-generation, 'omics technologies could have, with an emphasis on describing the principles of transcriptomic/genomic sequencing as well as bioinformatic technologies and their implications in both fundamental and applied areas of CVBD research. Tackling key biological questions employing these technologies will provide a 'systems biology' context and could lead to radically new intervention and management strategies against CVBDs
    corecore