17,953 research outputs found

    Modeling The Time Variability of Accreting Compact Sources

    Get PDF
    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently proposed model for their spectro-temporal properties. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals near the compact object and their reprocessing into hard radiation in an extended but non-uniform hot plasma corona surrounding the compact object. We argue that the majority of the timing characteristics of these light curves are due to the stochastic nature of the Comptonization process in the extended corona, whose properties, most notably its radial density dependence, are imprinted in them. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model light curves compare well with observations, providing good fits to their overall morphology, as manifest by the autocorrelation and skewness functions. The lags and PSDs of the model light curves are also in good agreement with those observed (the model can even accommodate the presence of QPOs). Finally, while most of the variability power resides at time scales \gsim a few seconds, at the same time, the model allows also for shots of a few msec in duration, in accordance with observation. We suggest that refinements of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.Comment: 23 pages Latex, 15 encapsulated postscript figures, to appear in the Astrophysical Journa

    Probing the Structure of Accreting Compact Sources Through X-Ray Time Lags and Spectra

    Full text link
    We exhibit, by compiling all data sets we can acquire, that the Fourier frequency dependent hard X-ray lags, first observed in the analysis of aperiodic variability of the light curves of the black hole candidate Cygnus X-1, appear to be a property shared by several other accreting black hole candidate sources and also by the different spectral states of this source. We then present both analytic and numerical models of these time lags resulting by the process of Comptonization in a variety of hot electron configurations. We argue that under the assumption that the observed spectra are due to Comptonization, the dependence of the lags on the Fourier period provides a means for mapping the spatial density profile of the hot electron plasma, while the period at which the lags eventually level--off provides an estimate of the size of the scattering cloud. We further examine the influence of the location and spatial extent of the soft photon source on the form of the resulting lags for a variety of configurations; we conclude that the study of the X-ray hard lags can provide clues about these parameters of the Comptonization process too. Fits of the existing data with our models indicate that the size of the Comptonizing clouds are quite large in extent (\sim 1 light second) with inferred radial density profiles which are in many instances inconsistent with those of the standard dynamical models, while the extent of the source of soft photons appears to be much smaller than those of the hot electrons by roughly two orders of magnitude and its location consistent with the center of the hot electron corona.Comment: 20 pages Latex, 11 postscript figures, to appear in the Astrophysical Journal, Vol 512, Feb 20 issu

    Majorana Spin Liquids on a two-leg ladder

    Get PDF
    We realize a gapless Majorana Orbital Liquid (MOL) using orbital degrees of freedom and also an SU(2)-invariant Majorana Spin Liquid (MSL) using both spin and orbital degrees of freedom in Kitaev-type models on a 2-leg ladder. The models are exactly solvable by Kitaev's parton approach, and we obtain long-wavelength descriptions for both Majorana liquids. The MOL has one gapless mode and power law correlations in energy at incommensuare wavevectors, while the SU(2) MSL has three gapless modes and power law correlations in spin, spin-nematic, and local energy observables. We study the stability of such states to perturbations away from the exactly solvable points. We find that both MOL and MSL can be stable against allowed short-range parton interactions. We also argue that both states persist upon allowing Z2Z_2 gauge field fluctuations, in that the number of gapless modes is retained, although with an expanded set of contributions to observables compared to the free parton mean field.Comment: 15 pages, 6 figures. Revised versio

    Neutron and gamma ray production in the 1991 June X-class flares

    Get PDF
    We present new calculations of pion radiation and neutron emission from solar flares. We fit the recently reported high energy GAMMA-1 observations with pion radiation produced in a solar flare magnetic loop. We calculate the expected neutron emission in such a loop model and make predictions of the neutron fluences expected from the 1991 June X-class flares

    Anti-Lambda polarization in high energy pp collisions with polarized beam

    Full text link
    We study the polarization of the anti-Lambda particle in polarized high energy pp collisions at large transverse momenta. The anti-Lambda polarization is found to be sensitive to the polarization of the anti-strange sea of the nucleon. We make predictions using different parameterizations of the polarized quark distribution functions. The results show that the measurement of longitudinal anti-Lambda polarization can distinguish different parameterizations, and that similar measurements in the transversely polarized case can give some insights into the transversity distribution of the anti-strange sea of nucleon.Comment: 11 pages, 4 figure

    The Li-7 and Be-7 deexcitation lines: Probes for accelerated particle transport models in solar flares

    Get PDF
    The photon energy spectrum of a spectral feature composed of the 429 and 478 keV gamma-ray lines from Li-7 and Be-7 (produced by interactions of flare-accelerated alpha particles with ambient He in the solar atmosphere) depends on the angular distribution of the interacting accelerated particles. This spectrum is calculated for limb and disc-centered flares using a loop model for the transport of the ions. In this model, the flux tube magnetic field is constant in the corona and converges in the chromosphere to the photosphere. Magnetic mirroring and MHD pitch-angle scattering are both taken into account. Comparison of these results with data from other experiments is presented

    Iron K Lines from Gamma Ray Bursts

    Get PDF
    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.Comment: 37 pages, 10 figures. Ap. J in pres
    corecore