8,298 research outputs found

    Measuring Electric Fields From Surface Contaminants with Neutral Atoms

    Get PDF
    In this paper we demonstrate a technique of utilizing magnetically trapped neutral Rb-87 atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate, and that the mechanism for reduction is likely surface diffusion, not desorption.Comment: 7 pages, 6 figures, published in Physical Review

    The Structure Of The Accretion Disk In The ADC Source 4U 1822-371

    Get PDF
    The low-mass X-ray binary (LMXB) 4U 1822-371 has an accretion disk corona (ADC) that scatters X-ray photons from the inner disk and neutron star out of the line of sight. It has a high orbital inclination and the secondary star eclipses the disk and ADC. We have obtained new time-resolved UV spectrograms and V- and I-band photometry of 4U 1822-371. The large quadratic term in our new optical eclipse ephemeris confirms that the system has an extremely high rate of mass transfer and mass accretion. The C IV lambda lambda = 1548 - 1550 angstrom emission line has a half width of similar to 4400 km/s, indicating a strong, high velocity wind is being driven off the accretion disk. Near the disk the wind is optically thick in UV, V, and J and the eclipse analysis shows that in V and J the optically thick wind extends nearly to the outer edge of the disk. The ADC must also extend vertically to a height equal to approximately half the disk radius.Astronom

    Recent Experiments with Bose-Condensed Gases at JILA

    Full text link
    We consider a binary mixture of two overlapping Bose-Einstein condensates in two different hyperfine states of \Rb87 with nearly identical magnetic moments. Such a system has been simply realized through application of radiofrequency and microwave radiation which drives a two-photon transition between the two states. The nearly identical magnetic moments afford a high degree of spatial overlap, permitting a variety of new experiments. We discuss some of the conditions under which the magnetic moments are identical, with particular emphasis placed on the requirements for a time-averaged orbiting potential (TOP) magnetic trap.Comment: 9 pages, 5 figures; corrected post-publication editio

    Noise-induced volatility of collective dynamics

    Get PDF
    "Noise-induced volatility" refers to a phenomenon of increased level of fluctuations in the collective dynamics of bistable units in the presence of a rapidly varying external signal, and intermediate noise levels. The archetypical signature of this phenomenon is that --beyond the increase in the level of fluctuations-- the response of the system becomes uncorrelated with the external driving force, making it different from stochastic resonance. Numerical simulations and an analytical theory of a stochastic dynamical version of the Ising model on regular and random networks demonstrate the ubiquity and robustness of this phenomenon, which is argued to be a possible cause of excess volatility in financial markets, of enhanced effective temperatures in a variety of out-of-equilibrium systems and of strong selective responses of immune systems of complex biological organisms. Extensive numerical simulations are compared with a mean-field theory for different network topologies

    Electronic structure of nanoscale iron oxide particles measured by scanning tunneling and photoelectron spectroscopies

    Full text link
    We have investigated the electronic structure of nano-sized iron oxide by scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as by photoelectron spectroscopy. Nano particles were produced by thermal treatment of Ferritin molecules containing a self-assembled core of iron oxide. Depending on the thermal treatment we were able to prepare different phases of iron oxide nanoparticles resembling gamma-Fe2O3, alpha-Fe2O3, and a phase which apparently contains both gamma-Fe2O3 and alpha-Fe2O3. Changes to the electronic structure of these materials were studied under reducing conditions. We show that the surface band gap of the electronic excitation spectrum can differ from that of bulk material and is dominated by surface effects.Comment: REVTeX, 6 pages, 10 figures, submitted to PR

    Measurement of the Temperature Dependence of the Casimir-Polder Force

    Get PDF
    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.Comment: 4 pages, 4 figures, published in Physical Review Letter

    Loglinear Models for Capture-Recapture Experiments on Open Populations

    Full text link
    25 pages, 1 article*Loglinear Models for Capture-Recapture Experiments on Open Populations* (Cormack, R. M.) 25 page

    Output coupling of a Bose-Einstein condensate formed in a TOP trap

    Full text link
    Two distinct mechanisms are investigated for transferring a pure 87Rb Bose-Einstein condensate in the F = 2, mF = 2 state into a mixture of condensates in all the mF states within the F = 2 manifold. Some of these condensates remain trapped whilst others are output coupled in the form of an elementary pulsed atom laser. Here we present details of the condensate preparation and results of the two condensate output coupling schemes. The first scheme is a radio frequency technique which allows controllable transfer into available mF states, and the second makes use of Majorana spin flips to equally populate all the manifold sub-states.Comment: 12 Pages, 5 Figures, submitted to J. Phys.

    Exact Solution of Two-Species Ballistic Annihilation with General Pair-Reaction Probability

    Full text link
    The reaction process A+B−>CA+B->C is modelled for ballistic reactants on an infinite line with particle velocities vA=cv_A=c and vB=−cv_B=-c and initially segregated conditions, i.e. all A particles to the left and all B particles to the right of the origin. Previous, models of ballistic annihilation have particles that always react on contact, i.e. pair-reaction probability p=1p=1. The evolution of such systems are wholly determined by the initial distribution of particles and therefore do not have a stochastic dynamics. However, in this paper the generalisation is made to p<1p<1, allowing particles to pass through each other without necessarily reacting. In this way, the A and B particle domains overlap to form a fluctuating, finite-sized reaction zone where the product C is created. Fluctuations are also included in the currents of A and B particles entering the overlap region, thereby inducing a stochastic motion of the reaction zone as a whole. These two types of fluctuations, in the reactions and particle currents, are characterised by the `intrinsic reaction rate', seen in a single system, and the `extrinsic reaction rate', seen in an average over many systems. The intrinsic and extrinsic behaviours are examined and compared to the case of isotropically diffusing reactants.Comment: 22 pages, 2 figures, typos correcte
    • …
    corecore