537 research outputs found

    The twist-bend nematic phase: translational self-diffusion and biaxiality studied by 1H nuclear magnetic resonance diffusometry

    Get PDF
    Recently, there has been a surge of interest in mesogens exhibiting the twist-bend nematic (NTB) phase that is shown to be chiral even though formed by effectively achiral molecules. Although it now seems to be clear that the NTB phase in the bulk is formed by degenerate domains having opposite handedness, the presence of a supramolecular heliconical structure proposed in the Dozov model has been contradicted by the Hoffmann et al. model in which the heliconical arrangement is replaced by a polar nematic phase. The evidence in support of this is that the quadrupolar splitting tensor measured in various experiments is uniaxial and not biaxial as expected for the twist-bend nematic structure. In this debate, among other evidence, the molecular translational diffusion, and its magnitude with respect to that in the nematic phase above the NTB phase, has also been invoked to eliminate or to confirm one model or the other. We attempt to resolve this issue by reporting the first measurements of the translational self-diffusion coefficients in the nematic and twist-bend nematic phases formed 1″,7″-bis-4-(4′-cyanobiphenyl-4′-yl) heptane (CB7CB). Such measurements certainly appear to resolve the differences between the two models in favour of that for the classic twist-bend nematic phase

    Probing a non-biaxial behavior of infinitely thin hard platelets

    Full text link
    We give a criterion to test a non-biaxial behavior of infinitely thin hard platelets of D2hD_{2h} symmetry based upon the components of three order parameter tensors. We investigated the nematic behavior of monodisperse infinitely thin rectangular hard platelet systems by using the criterion. Starting with a square platelet system, and we compared it with rectangular platelet systems of various aspect ratios. For each system, we performed equilibration runs by using isobaric Monte Carlo simulations. Each system did not show a biaxial nematic behavior but a uniaxial nematic one, despite of the shape anisotropy of those platelets. The relationship between effective diameters by simulations and theoretical effective diameters of the above systems was also determined.Comment: Submitted to JPS

    Viscosities of the Gay-Berne nematic liquid crystal

    Full text link
    We present molecular dynamics simulation measurements of the viscosities of the Gay-Berne phenomenological model of liquid crystals in the nematic and isotropic phases. The temperature dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment.Comment: 11 pages, 4 Postscript figures, Revte

    Core Structure and Non-Abelian Reconnection of Defects in a Biaxial Nematic Spin-2 Bose-Einstein Condensate

    Get PDF
    We calculate the energetic structure of defect cores and propose controlled methods to imprint a nontrivially entangled vortex pair that undergoes non-Abelian vortex reconnection in a biaxial nematic spin-2 condensate. For a singular vortex, we find three superfluid cores in addition to depletion of the condensate density. These exhibit order parameter symmetries that are different from the discrete symmetry of the biaxial nematic phase, forming an interface between the defect and the bulk superfluid. We provide a detailed analysis of phase mixing in the resulting vortex cores and find an instability dependent upon the orientation of the order parameter. We further show that the spin-2 condensate is a promising system for observing spontaneous deformation of a point defect into an “Alice ring” that has so far avoided experimental detection
    corecore