30 research outputs found

    Real-time depth sectioning: Isolating the effect of stress on structure development in pressure-driven flow

    Get PDF
    Transient structure development at a specific distance from the channel wall in a pressure-driven flow is obtained from a set of real-time measurements that integrate contributions throughout the thickness of a rectangular channel. This “depth sectioning method” retains the advantages of pressure-driven flow while revealing flow-induced structures as a function of stress. The method is illustrated by applying it to isothermal shear-induced crystallization of an isotactic polypropylene using both synchrotron x-ray scattering and optical retardance. Real-time, depth-resolved information about the development of oriented precursors reveals features that cannot be extracted from ex-situ observation of the final morphology and that are obscured in the depth-averaged in-situ measurements. For example, at 137 °C and at the highest shear stress examined (65 kPa), oriented thread-like nuclei formed rapidly, saturated within the first 7 s of flow, developed significant crystalline overgrowth during flow and did not relax after cessation of shear. At lower stresses, threads formed later and increased at a slower rate. The depth sectioning method can be applied to the flow-induced structure development in diverse complex fluids, including block copolymers, colloidal systems, and liquid-crystalline polymers

    Formation of layer structures in plastic mouldings

    No full text
    65.00; Translated from German (Kautsch. Gummi Kunstst. 1987 v. 40(4) p. 301-307)SIGLEAvailable from British Library Document Supply Centre- DSC:9022.0601(BISI-EM--82)T / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    High-Stress Shear-Induced Crystallization in Isotactic Polypropylene and Propylene/Ethylene Random Copolymers

    Get PDF
    Crystallization of an isotactic polypropylene (iPP) homopolymer and two propylene/ethylene random copolymers (RACO), induced by high-stress shear, was studied using in situ synchrotron wide-angle X-ray diffraction (WAXD) at 137 °C. The “depth sectioning” method (Fernandez-Ballester, Journal of Rheology 53:5 (2009), pp. 1229−1254) was applied in order to isolate the contributions of different layers in the stress gradient direction and to relate specific structural evolution to the corresponding local stress. This approach gives quantitative results in terms of the specific length of fibrillar nuclei as a function of the applied stress. As expected, crystallization becomes faster with increasing stress—from the inner to the outer layer—for all three materials. Stress-induced crystallization in a RACO with 7.3 mol % ethylene content was triggered at only 1 °C below its nominal melting temperature. The comparison of iPP and RACO’s with 3.4 and 7.3 mol % ethylene monomer reveals the effect of ethylene defects on high-stress shear induced crystallization at 137 °C. It is found that, for a given applied stress, the specific nuclei length formed by flow increases with ethylene content—which is attributed to a greater high molecular weight tail. However, the linear growth rate is significantly reduced by the presence of ethylene comonomers and it is found that this effect dominates the overall crystallization kinetics. Finally, a time lag is found between development of parent lamellae and the emergence of daughter lamellae, consistent with the concept of daughter lamellae nucleated by homoepitaxy on the lateral faces of existing parent lamellae. Includes supporting information
    corecore