1,856 research outputs found

    On model checking data-independent systems with arrays without reset

    Full text link
    A system is data-independent with respect to a data type X iff the operations it can perform on values of type X are restricted to just equality testing. The system may also store, input and output values of type X. We study model checking of systems which are data-independent with respect to two distinct type variables X and Y, and may in addition use arrays with indices from X and values from Y . Our main interest is the following parameterised model-checking problem: whether a given program satisfies a given temporal-logic formula for all non-empty nite instances of X and Y . Initially, we consider instead the abstraction where X and Y are infinite and where partial functions with finite domains are used to model arrays. Using a translation to data-independent systems without arrays, we show that the u-calculus model-checking problem is decidable for these systems. From this result, we can deduce properties of all systems with finite instances of X and Y . We show that there is a procedure for the above parameterised model-checking problem of the universal fragment of the u-calculus, such that it always terminates but may give false negatives. We also deduce that the parameterised model-checking problem of the universal disjunction-free fragment of the u-calculus is decidable. Practical motivations for model checking data-independent systems with arrays include verification of memory and cache systems, where X is the type of memory addresses, and Y the type of storable values. As an example we verify a fault-tolerant memory interface over a set of unreliable memories.Comment: Appeared in Theory and Practice of Logic Programming, vol. 4, no. 5&6, 200

    Biases in Drosophila melanogaster protein trap screens.

    Get PDF
    BACKGROUND: The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP) into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. RESULTS: We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p < 10(-4)). Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. CONCLUSION: Our analyses suggest that the utility of P-element vectors for protein trap screens has largely been exhausted, and that approximately 2,800 genes may still be amenable using piggyBac vectors. Thus protein trap strategies based on current approaches are unlikely to offer true genome-wide coverage. We suggest that either transposons with reduced insertion bias or recombineering-based targeting techniques will be required for comprehensive genome coverage in Drosophila.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Reparatory and Manufacturing Hard-Facing of Working Parts Made of Stainless Steels in Confectionary Industry

    Get PDF
    In this paper, for the sake of improving the reparatory hard-facing technology is especially analyzed reparatory hard-facing of tools for manufacturing compressed products in confectionary industry. Those products are being made of a mixture consisting of several powdery components, which is compressed under high pressure. In that way the connection between particles is realized, thus achieving certain hardness and strength of the confectionary product. The considered tool is made of high-alloyed stainless steel. The tool contains 30 identical working places. Besides the production process wear, on those tools, from time to time, appear mechanical damage on some of the products' shape punches, as cracks at the edges, where the products' final shapes are formed. Those damages are small, size wise, but they cause strong effect on the products' final shape. The aggravating circumstance is that the shape punch is extremely loaded in pressure, thus after the reparatory hard-facing, the additional heat treatment is necessary. Mechanical properties in the heat affected zone (HAZ) are being leveled by annealing and what also partially reduces the residual internal stresses

    Optimal welding technology of high strength steel S690QL

    Get PDF
    In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint

    Assessment of Cardiorespiratory Interactions During Spontaneous and Controlled Breathing: Non-linear Model-free Analysis

    Get PDF
    In this work, nonlinear model-free methods for bivariate time series analysis have been applied to study cardiorespiratory interactions. Specifically, entropy-based (i.e. Transfer Entropy and Cross Entropy) and Convergent Cross Mapping asymmetric coupling measures have been computed on heart rate and breathing time series extracted from electrocardiographic (ECG) and respiratory signals acquired on 19 young healthy subjects during an experimental protocol including spontaneous and controlled breathing conditions. Results evidence a bidirectional nature of cardiorespiratory interactions, and highlight clear similarities and differences among the three considered measures
    corecore