1,103 research outputs found

    New shifted hybrid inflation

    Full text link
    A new shifted hybrid inflationary scenario is introduced which, in contrast to the older one, relies only on renormalizable superpotential terms. This scenario is automatically realized in a concrete extension of the "minimal" supersymmetric Pati-Salam model which naturally leads to a moderate violation of Yukawa unification so that, for mu>0, the predicted b-quark mass is acceptable even with universal boundary conditions. It is shown that this extended model possesses a classically flat "shifted" trajectory which acquires a slope via one-loop radiative corrections and can be used as inflationary path. The constraints from the cosmic background explorer can be met with natural values of the relevant parameters. Also, there is no disastrous production of magnetic monopoles after inflation since the Pati-Salam gauge group is already broken on the "shifted" path. The relevant part of inflation takes place at values of the inflaton field which are not much smaller than the "reduced" Planck scale and, thus, supergravity corrections could easily invalidate inflation. It is, however, shown that inflation can be kept intact provided that an extra gauge singlet with a superheavy vacuum expectation value, which originates from D-terms, is introduced and a specific form of the Kaehler potential is used. Moreover, it is found that, although the supergravity corrections are sizable, the constraints from the cosmic background explorer can again be met by readjusting the values of the parameters which were obtained with global supersymmetry.Comment: 18 pages including 1 figure, uses JHEP3.cls, minor corrections, version to appear in JHE

    Continuous growth of vimentin filaments in mouse fibroblasts

    Get PDF
    We have investigated the dynamics of intermediate filament assembly in vivo by following the fate of heterologous chicken vimentin subunits expressed under the control of an inducible promoter in transfected mouse fibroblasts. Using RNase protection, metabolic protein pulse-chase and immunofluorescence microscopy, we have examined the fate of newly assembled subunits under physiological conditions in situ. Following induction and subsequent removal of inducer, chicken vimentin mRNA had a half-life of approximately 6 h while both chicken and mouse vimentin protein polymer had long half-lives--roughly equivalent to the cell generation time. Moreover, following deinduction, chicken vimentin immunolocalization progressed from a continuous (8-10 h chase) to a discontinuous (> or = 20 h chase) pattern. The continuous chicken vimentin staining reflects the uniform incorporation of chicken vimentin throughout the endogenous mouse vimentin network while the discontinuous or punctate chicken vimentin staining represents short interspersed segments of assembled chicken vimentin superimposed on the endogenous polymer. This punctate staining pattern of chicken vimentin was present throughout the entire array of intermediate filaments, with no bias toward the perinuclear region. These results are consistent with a continuous growth model of intermediate filament assembly, wherein subunit addition occurs at discrete sites located throughout the cytoskeleton

    Inflation, Leptogenesis, and Yukawa Quasi-Unification within a Supersymmetric Left-Right Model

    Full text link
    A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including supergravity corrections, we find that this extended model naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild tuning of the initial conditions. With a convenient choice of signs of the terms in the Kahler potential, we can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data on the inflationary observables are readily reproduced. Inflation is followed by non-thermal leptogenesis via the decay of the right-handed neutrinos emerging from the decay of the inflaton and any possible washout of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino oscillation parameters.Comment: 20 pages including 4 figure

    Constraints on a mixed inflaton and curvaton scenario for the generation of the curvature perturbation

    Full text link
    We consider a supersymmetric grand unified model which naturally solves the strong CP and mu problems via a Peccei-Quinn symmetry and leads to the standard realization of hybrid inflation. We show that the Peccei-Quinn field of this model can act as curvaton. In contrast to the standard curvaton hypothesis, both the inflaton and the curvaton contribute to the total curvature perturbation. The model predicts an isocurvature perturbation too which has mixed correlation with the adiabatic one. The cold dark matter of the universe is mostly constituted by axions plus a small amount of lightest sparticles. The predictions of the model are confronted with the Wilkinson microwave anisotropy probe and other cosmic microwave background radiation data. We analyze two representative choices of parameters and derive bounds on the curvaton contribution to the adiabatic perturbation. We find that, for the choice which provides the best fitting of the data, the curvaton contribution to the adiabatic amplitude must be smaller than about 67% (at 95% confidence level). The best-fit power spectra are dominated by the adiabatic part of the inflaton contribution. We use Bayesian model comparison to show that this choice of parameters is disfavored with respect to the pure inflaton scale-invariant case with odds of 50 to 1. For the second choice of parameters, the adiabatic mode is dominated by the curvaton, but this choice is strongly disfavored relative to the pure inflaton scale-invariant case (with odds of 10^7 to 1). We conclude that in the present framework the perturbations must be dominated by the adiabatic component from the inflaton.Comment: 27 pages including 16 figures, uses Revte

    Axions and the dark matter of the universe

    Get PDF
    Spin(10) axion models are constructed which offer the possibility that axions comprise all or a significant part of the dark matter of the Universe

    Phosphorylation of Subunit Proteins of Intermediate Filaments from Chicken Muscle and Nonmuscle Cells

    Get PDF
    The phosphorylation of the subunit proteins of intermediate (10-nm) filaments has been investigated in chicken muscle and nonmuscle cells by using a two-dimensional gel electrophoresis system. Desmin, the 50,000-dalton subunit protein of the intermediate filaments of muscle, had previously been shown to exist as two major isoelectric variants--alpha and ß --in smooth, skeletal, and cardiac chicken muscle. Incubation of skeletal and smooth muscle tissue with 32PO4{}3- reveals that the acidic variant, alpha -desmin, and three other desmin variants are phosphorylated in vivo and in vitro. Under the same conditions, minor components of alpha - and ß -tropomyosin from skeletal muscle, but not smooth muscle, are also phosphorylated. Both the phosphorylated desmin variants and the nonphosphorylated ß -desmin variant remain insoluble under conditions that solubilize actin and myosin filaments, but leave Z-discs and intermediate filaments insoluble. Primary cultures of embryonic chicken muscle labeled with 32PO4{}3- possess, in addition to the desmin variants described above, a major nonphosphorylated and multiple phosphorylated variants of the 52,000-dalton, fibroblast-type intermediate filament protein (IFP). Filamentous cytoskeletons, prepared from primary myogenic cultures by Triton X-100 extraction, contain actin and all of the phosphorylated and nonphosphorylated variants of both desmin and the IFP. Similarly, these proteins are the major components of the caps of aggregated 10-nm filaments isolated from the same cell cultures previously exposed to Colcemid. These results demonstrate that a nonphosphorylated and several phosphorylated variants of desmin and IFP are present in assembled structures in muscle and nonmuscle cells

    Nonlinear magnetoinductive transmission lines

    Full text link
    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent capacitance. Extended numerical simulations reveal that power transmission along the array is also possible in other than the linear frequency bands, which are located close to the nonlinear resonances of a single nonlinear RLC circuit. Moreover, the effectiveness of power transmission for driving frequencies in the nonlinear bands is comparable to that in the linear band. Power transmission in the nonlinear bands occurs through the linear modes of the system, and it is closely related to the instability of a mode that is localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of Bifurcation and Chao

    Leptogenesis through direct inflaton decay to light particles

    Full text link
    We present a scenario of nonthermal leptogenesis following supersymmetric hybrid inflation, in the case where inflaton decay to both heavy right handed neutrino and SU(2)_L triplet superfields is kinematically disallowed. Lepton asymmetry is generated through the decay of the inflaton into light particles by the interference of one-loop diagrams with right handed neutrino and SU(2)_L triplet exchange respectively. We require superpotential couplings explicitly violating a U(1) R-symmetry and R-parity. However, the broken R-parity need not have currently observable low-energy signatures. Also, the lightest sparticle can be stable. Some R-parity violating slepton decays may, though, be detectable in the future colliders. We take into account the constraints from neutrino masses and mixing and the preservation of the primordial lepton asymmetry.Comment: 11 pages including 3 figures, uses Revtex, minor corrections, references adde
    corecore