49 research outputs found

    Microplastics: a review of policies and responses

    Get PDF
    Although (micro)plastic contamination is a worldwide concern, most scientific literature only restates that issue rather than presenting strategies to cope with it. This critical review assembles the current knowledge on policies and responses to tackle plastic pollution, including peer-reviewed scientific literature, gray literature and relevant reports to provide: (1) a timeline of policies directly or indirectly addressing microplastics; (2) the most up-to-date upstream responses to prevent microplastics pollution, such as circular economy, behavioral change, development of bio-based polymers and market-based instruments as well as source-specific strategies, focusing on the clothing industry, tire and road wear particles, antifouling paints and recreational activities; (3) a set of downstream responses tackling microplastics, such as waste to energy, degradation, water treatment plants and litter clean-up strategies; and examples of (4) multifaceted responses focused on both mitigating and preventing microplastics pollution, e.g., approaches implemented in fisheries and aquaculture facilities. Preventive strategies and multifaceted responses are postulated as pivotal to handling the exacerbated release of microplastics in the environment, while downstream responses stand out as auxiliary strategies to the chief upstream responses. The information gathered here bridges the knowledge gaps on (micro)plastic pollution by providing a synthesized baseline material for further studies addressing this environmental issue

    Concurrent sampling of transitional and coastal waters by Diffusive Gradient in Thin-films (DGT) and spot sampling for trace metals analysis

    Get PDF
    This protocol was developed based on the knowledge acquired in the framework of the Interreg MONITOOL project (EAPA_565/2016) where extensive sampling campaigns were performed in transitional and coastal waters covering eight European countries. It provides detailed procedures and guidelines for the sampling of these waterbodies by concurrent collection of discrete water samples and the deployment of Diffusive Gradient in Thin-films (DGT) passive samplers for the measurement of trace metal concentrations. In order to facilitate the application of this protocol by end-users, it presents steps to follow in the laboratory prior to sampling campaigns, explains the procedures for field campaigns (including in situ measurement of supporting parameters) and subsequent sample processing in the laboratory in preparation for trace metal analyze by inductively coupled plasma-mass spectrometry (ICP-MS) and voltammetry. The protocol provides a systematic, coherent field sampling and sample preparation strategy that was developed in order to ensure comparability and reproducibility of the data obtained from each project Partner in different regions. • Standardization of the concurrent sampling of transitional and coastal waters by DGT passive samplers and spot sampling. • Robust procedures and tips based on existing international standards and comprehensive practical experience. • Links to demonstration videos produced within the MONITOOL project

    Assessing variability in the ratio of metal concentrations measured by DGT-type passive samplers and spot sampling in European seawaters

    Get PDF
    The current study evaluates the effect of seawater physico-chemical characteristics on the relationship between the concentration of metals measured by Diffusive Gradients in Thin films (DGT) passive samplers (i.e., DGT-labile concentration) and the concentrations measured in discrete water samples. Accordingly, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to measure the total dissolved metal concentrations in the discrete water samples and the labile metal concentrations obtained by DGT samplers; additionally, lead and cadmium conditional labile fractions were determined by Anodic Stripping Voltammetry (ASV) and total dissolved nickel was measured by Cathodic Stripping Voltammetry (CSV). It can be concluded that, in general, the median ratios of DGT/ICP and DGT/ASV(CSV) were lower than 1, except for Ni (median ratio close to 1) and Zn (higher than 1). This indicates the importance of speciation and time-integrated concentrations measured using passive sampling techniques, which is in line with the WFD suggestions for improving the chemical assessment of waterbodies. It is the variability in metal content in waters rather than environmental conditions to which the variability of the ratios can be attributed. The ratios were not significantly affected by the temperature, salinity, pH, oxygen, DOC or SPM, giving a great confidence for all the techniques used. Within a regulatory context such as the EU Water Framework Directive this is a great advantage, since the simplicity of not needing to use corrections to minimize the effects of environmental variables could help in implementing DGTs within monitoring networks

    How do trypanosomes change gene expression in response to the environment?

    Full text link

    Microplastics: A Review of Policies and Responses

    Get PDF
    Although (micro)plastic contamination is a worldwide concern, most scientific literature only restates that issue rather than presenting strategies to cope with it. This critical review assembles the current knowledge on policies and responses to tackle plastic pollution, including peer-reviewed scientific literature, gray literature and relevant reports to provide: (1) a timeline of policies directly or indirectly addressing microplastics; (2) the most up-to-date upstream responses to prevent microplastics pollution, such as circular economy, behavioral change, development of bio-based polymers and market-based instruments as well as source-specific strategies, focusing on the clothing industry, tire and road wear particles, antifouling paints and recreational activities; (3) a set of downstream responses tackling microplastics, such as waste to energy, degradation, water treatment plants and litter clean-up strategies; and examples of (4) multifaceted responses focused on both mitigating and preventing microplastics pollution, e.g., approaches implemented in fisheries and aquaculture facilities. Preventive strategies and multifaceted responses are postulated as pivotal to handling the exacerbated release of microplastics in the environment, while downstream responses stand out as auxiliary strategies to the chief upstream responses. The information gathered here bridges the knowledge gaps on (micro)plastic pollution by providing a synthesized baseline material for further studies addressing this environmental issue
    corecore