883 research outputs found

    Minimum Cost of Transport in Asian Elephants: Do We Really Need a Bigger Elephant?

    Get PDF
    Body mass is the primary determinant of an animal’s energy requirements. At their optimum walking speed, large animals have lower mass-specific energy requirements for locomotion than small ones. In animals ranging in size from 0.8 g (roach) to 260 kg (zebu steer), the minimum cost of transport (COTmin) decreases with increasing body size roughly as COTmin∝body mass (Mb)–0.316±0.023 (95% CI). Typically, the variation of COTmin with body mass is weaker at the intraspecific level as a result of physiological and geometric similarity within closely related species. The interspecific relationship estimates that an adult elephant, with twice the body mass of a mid-sized elephant, should be able to move its body approximately 23% cheaper than the smaller elephant. We sought to determine whether adult Asian and sub-adult African elephants follow a single quasi-intraspecific relationship, and extend the interspecific relationship between COTmin and body mass to 12-fold larger animals. Physiological and possibly geometric similarity between adult Asian elephants and sub-adult African elephants caused body mass to have a no effect on COTmin (COTmin∝Mb0.007±0.455). The COTmin in elephants occurred at walking speeds between 1.3 and ∌1.5 m s–1, and at Froude numbers between 0.10 and 0.24. The addition of adult Asian elephants to the interspecific relationship resulted in COTmin∝M –0.277±0.046b. The quasi-intraspecific relationship between body mass and COTmin among elephants caused the interspecific relationship to underestimate COTmin in larger elephants

    Quantum Hamiltonian Reduction of the Schwinger Model

    Get PDF
    We reexamine a unitary-transformation method of extracting a physical Hamiltonian from a gauge field theory after quantizing all degrees of freedom including redundant variables. We show that this {\it quantum Hamiltonian reduction} method suffers from crucial modifications arising from regularization of composite operators. We assess the effects of regularization in the simplest gauge field theory, the Schwinger model. Without regularization, the quantum reduction yields the identical Hamiltonian with the classically reduced one. On the other hand, with regularization incorporated, the resulting Hamiltonian of the quantum reduction disagrees with that of the classical reduction. However, we find that the discrepancy is resolved by redefinitions of fermion currents and that the results are again consistent with those of the classical reduction.Comment: 23 pages, LaTeX file, UT-Komaba 94-

    Mortality study of 18 000 patients treated with omeprazole.

    Get PDF
    Background: The long term safety of potent gastric acid suppressive therapy has yet to be established. Method: General practice record review at a median interval of 26 months followed by retrieval of details of all deaths within four years using the UK National Health Service Central Registers in 17 936 patients prescribed omeprazole in 1993–1995. Death rates were compared with general population rates. Results: Records of 17 489 patients (97.5%) were examined. A total of 12 703 patients received further scripts for antisecretory drugs, 8097 for omeprazole only (65.6%): 3097 patients have died. All cause mortality was higher in the first year (observed/expected (O/E) 1.44 (95% confidence intervals (CI) 1.34–1.55); p<0.0001) but had fallen to population expectation by the fourth year. There were significant mortality increases in the first year, falling to or below population expectation by the fourth year, for deaths ascribed to neoplasms (1.82 (95% CI 1.58–2.08); p<0.0001), circulatory diseases (1.27 (95% CI 1.13–1.43); p<0.0001), and respiratory diseases (1.37 (95% CI 1.12–1.64); p<0.001). Increased mortality ascribed to digestive diseases (2.56 (95% CI 1.87–3.43); p<0.0001) persisted, although reduced. Increased mortality rates for cancers of the stomach (4.06 (95% CI 2.60–6.04); p<0.0001), colon and rectum (1.40 (95% CI 0.84–2.18); p=0.075), and trachea, bronchus, and lung (1.64 (95% CI 1.19–2.19); p<0.01) seen in the first year had disappeared by the fourth year but that for cancer of the oesophagus had not (O/E 7.35 (95% CI 5.20–10.09) (p<0.0001) in year 1; 2.88 (95% CI 1.62–4.79) (p<0.001) in year 4). Forty of 78 patients dying of oesophageal cancer had the disease present at registration. Twenty seven of those remaining cases had clinical evidence of Barrett’s disease, stricture, ulcer, or oesophagitis at registration (O/E 3.30 (95% CI 2.17–4.80)). Six deaths occurred in patients with hiatal hernia or reflux only (O/E 1.02 (95% CI 0.37–2.22)) and five in patients without oesophageal disease (O/E 0.77 (95% CI 0.25–1.80)). No relationships were detected with numbers of omeprazole scripts received. Conclusions: Increases in mortality associated with treatment are due to pre- existing illness, including pre-existing severe oesophageal disease. There was no evidence of an increased risk of oesophageal adenocarcinoma in those without oesophageal mucosal damage recorded at registration

    Towards a Nonperturbative Path Integral in Gauge Theories

    Get PDF
    We propose a modification of the Faddeev-Popov procedure to construct a path integral representation for the transition amplitude and the partition function for gauge theories whose orbit space has a non-Euclidean geometry. Our approach is based on the Kato-Trotter product formula modified appropriately to incorporate the gauge invariance condition, and thereby equivalence to the Dirac operator formalism is guaranteed by construction. The modified path integral provides a solution to the Gribov obstruction as well as to the operator ordering problem when the orbit space has curvature. A few explicit examples are given to illustrate new features of the formalism developed. The method is applied to the Kogut-Susskind lattice gauge theory to develop a nonperturbative functional integral for a quantum Yang-Mills theory. Feynman's conjecture about a relation between the mass gap and the orbit space geometry in gluodynamics is discussed in the framework of the modified path integral.Comment: plain Latex, 12 pages, a few changes made and some comments added, a final version to appear in Phys. Lett.

    A model for hysteretic magnetic properties under the application of noncoaxial stress and field

    Get PDF
    Although descriptions of the effect of stress on spontaneous magnetization within a single domain already exist, there remains no adequate mathematical model for the effects of noncoaxial magnetic field and stress on bulk magnetization in a multidomained specimen. This article addresses the problem and provides a phenomenological theory that applies to the case of bulk isotropic materials. The magnetomechanical hysteresis model of Sablik and Jiles is thus extended to treat magnetic properties in the case of noncoaxial stress and magnetic field in an isotropic, polycrystalline medium. In the modeling, noncollinearity between magnetization and magnetic field is taken into account. The effect of roll‐axis anisotropy is also considered. Both magnetic and magnetostrictive hysteresis are describable by the extended model. Emphasis in this article is on describing properties like coercivity, remanence,hysteresis loss, maximum flux density, and maximum differential permeability as a function of stress for various angular orientations between field and stress axis. The model predictions are compared with experimental results

    A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics

    Get PDF
    We demonstrate single-photon counting at 1550 nm with titanium-nitride (TiN) microwave kinetic inductance detectors. Energy resolution of 0.4 eV and arrival-time resolution of 1.2 microseconds are achieved. 0-, 1-, 2-photon events are resolved and shown to follow Poisson statistics. We find that the temperature-dependent frequency shift deviates from the Mattis-Bardeen theory, and the dissipation response shows a shorter decay time than the frequency response at low temperatures. We suggest that the observed anomalous electrodynamics may be related to quasiparticle traps or subgap states in the disordered TiN films. Finally, the electron density-of-states is derived from the pulse response.Comment: 4 pages, 3 figure

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
    • 

    corecore