1,034 research outputs found
Why material slow light does not improve cavity-enhanced atom detection
We discuss the prospects for enhancing absorption and scattering of light
from a weakly coupled atom in a high-finesse optical cavity by adding a medium
with large, positive group index of refraction. The slow-light effect is known
to narrow the cavity transmission spectrum and increase the photon lifetime,
but the quality factor of the cavity may not be increased in a metrologically
useful sense. Specifically, detection of the weakly coupled atom through either
cavity ringdown measurements or the Purcell effect fails to improve with the
addition of material slow light. A single-atom model of the dispersive medium
helps elucidate why this is the case.Comment: 11 pages, 4 figures; QuTiP python file included. This version:
changed title and added several references; results are unchanged. Accepted
for open access publication in a special issue of Journal of Modern Optics in
memory of Prof Danny Segal. Publisher's version available at
http://dx.doi.org/10.1080/09500340.2017.138451
In-situ Investigation of the Early Stage of TiO2 epitaxy on (001) SrTiO3
We report on a systematic study of the growth of epitaxial TiO2 films
deposited by pulsed laser deposition on Ti-terminated (001) SrTiO3 single
crystals. By using in-situ reflection high energy electron diffraction, low
energy electron diffraction, x-ray photoemission spectroscopy and scanning
probe microscopy, we show that the stabilization of the anatase (001) phase is
preceded by the growth of a pseudomorphic Sr-Ti-O intermediate layer, with a
thickness between 2 and 4 nm. The data demonstrate that the formation of this
phase is related to the activation of long range Sr migration from the
substrate to the film. The role of interface Gibbs energy minimization, as a
driving force for Sr diffusion, is discussed. Our results enrich the phase
diagram of the Sr-Ti-O system under epitaxial strain opening the roudeficient
SrTiO phase.Comment: 8 pages, 7 figure
Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles
Background: Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles-both inside and outside the cells-characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences. Results: In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO32-) and tellurite (TeO32-) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO32- and 0.5 mM TeO32- to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO32- and TeO32- bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO32- bioreduction, while TeO32- bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent oxidoreductases. The organic coating surrounding biogenic Se- and TeNPs was also characterized through Fourier-transform infrared spectroscopy. This analysis revealed interesting differences among the NPs produced by Ochrobactrum sp. MPV1 and suggested a possible different role of phospholipids and proteins in both biosynthesis and stabilization of such chalcogen-NPs. Conclusions: In conclusion, Ochrobactrum sp. MPV1 has demonstrated to be an ideal candidate for the bioconversion of toxic oxyanions such as selenite and tellurite to their respective elemental forms, producing intracellular Se- and TeNPs possibly exploitable in biomedical and industrial applications.[Figure not available: see fulltext.
Plasma Physics
Contains reports on three research projects.United States Atomic Energy Commission under Contract AT(30-1)-184
Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite-coated surfaces
In an effort to prevent the formation of pathogenic biofilms on hydroxyapatite (HA)-based clinical devices and surfaces, we present a study evaluating the antimicrobial efficacy of Spherical biogenic Se-Nanostructures Embedded in Organic material (Bio Se-NEMO-S) produced by Bacillus mycoides SelTE01 in comparison with two different chemical selenium nanoparticle (SeNP) classes. These nanomaterials have been studied as potential antimicrobials for eradication of established HA-grown biofilms, for preventing biofilm formation on HA-coated surfaces and for inhibition of planktonic cell growth of Pseudomonas aeruginosa NCTC 12934 and Staphylococcus aureus ATCC 25923. Bio Se-NEMO resulted more efficacious than those chemically produced in all tested scenarios. Bio Se-NEMO produced by B. mycoides SelTE01 after 6 or 24 h of Na 2 SeO 3 exposure show the same effective antibiofilm activity towards both P. aeruginosa and S. aureus strains at 0.078 mg ml −1 (Bio Se-NEMO 6 ) and 0.3125 mg ml −1 (Bio Se-NEMO 24 ). Meanwhile, chemically synthesized SeNPs at the highest tested concentration (2.5 mg ml −1 ) have moderate antimicrobial activity. The confocal laser scanning micrographs demonstrate that the majority of the P. aeruginosa and S. aureus cells exposed to biogenic SeNPs within the biofilm are killed or eradicated. Bio Se-NEMO therefore displayed good antimicrobial activity towards HA-grown biofilms and planktonic cells, becoming possible candidates as new antimicrobials
Parameterized Compilation Lower Bounds for Restricted CNF-formulas
We show unconditional parameterized lower bounds in the area of knowledge
compilation, more specifically on the size of circuits in decomposable negation
normal form (DNNF) that encode CNF-formulas restricted by several graph width
measures. In particular, we show that
- there are CNF formulas of size and modular incidence treewidth
whose smallest DNNF-encoding has size , and
- there are CNF formulas of size and incidence neighborhood diversity
whose smallest DNNF-encoding has size .
These results complement recent upper bounds for compiling CNF into DNNF and
strengthen---quantitatively and qualitatively---known conditional low\-er
bounds for cliquewidth. Moreover, they show that, unlike for many graph
problems, the parameters considered here behave significantly differently from
treewidth
Between Treewidth and Clique-width
Many hard graph problems can be solved efficiently when restricted to graphs
of bounded treewidth, and more generally to graphs of bounded clique-width. But
there is a price to be paid for this generality, exemplified by the four
problems MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set that
are all FPT parameterized by treewidth but none of which can be FPT
parameterized by clique-width unless FPT = W[1], as shown by Fomin et al [7,
8]. We therefore seek a structural graph parameter that shares some of the
generality of clique-width without paying this price. Based on splits, branch
decompositions and the work of Vatshelle [18] on Maximum Matching-width, we
consider the graph parameter sm-width which lies between treewidth and
clique-width. Some graph classes of unbounded treewidth, like
distance-hereditary graphs, have bounded sm-width. We show that MaxCut, Graph
Coloring, Hamiltonian Cycle and Edge Dominating Set are all FPT parameterized
by sm-width
Charge density waves enhance the electronic noise of manganites
The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin
films in the temperature range from room temperature to 160 K are reported. It
is shown that both the broadband 1/f noise properties and the dependence of
resistance on electric field are consistent with the idea of a collective
electrical transport, as in the classical model of sliding charge density
waves. On the other hand, the observations cannot be reconciled with standard
models of charge ordering and charge melting. Methodologically, it is proposed
to consider noise-spectra analysis as a unique tool for the identification of
the transport mechanism in such highly correlated systems. On the basis of the
results, the electrical transport is envisaged as one of the most effective
ways to understand the nature of the insulating, charge-modulated ground states
in manganites.Comment: 6 two-column pages, 5 figure
Expanding the expressive power of Monadic Second-Order logic on restricted graph classes
We combine integer linear programming and recent advances in Monadic
Second-Order model checking to obtain two new algorithmic meta-theorems for
graphs of bounded vertex-cover. The first shows that cardMSO1, an extension of
the well-known Monadic Second-Order logic by the addition of cardinality
constraints, can be solved in FPT time parameterized by vertex cover. The
second meta-theorem shows that the MSO partitioning problems introduced by Rao
can also be solved in FPT time with the same parameter. The significance of our
contribution stems from the fact that these formalisms can describe problems
which are W[1]-hard and even NP-hard on graphs of bounded tree-width.
Additionally, our algorithms have only an elementary dependence on the
parameter and formula. We also show that both results are easily extended from
vertex cover to neighborhood diversity.Comment: Accepted for IWOCA 201
Are there any good digraph width measures?
Several different measures for digraph width have appeared in the last few
years. However, none of them shares all the "nice" properties of treewidth:
First, being \emph{algorithmically useful} i.e. admitting polynomial-time
algorithms for all \MS1-definable problems on digraphs of bounded width. And,
second, having nice \emph{structural properties} i.e. being monotone under
taking subdigraphs and some form of arc contractions. As for the former,
(undirected) \MS1 seems to be the least common denominator of all reasonably
expressive logical languages on digraphs that can speak about the edge/arc
relation on the vertex set.The latter property is a necessary condition for a
width measure to be characterizable by some version of the cops-and-robber game
characterizing the ordinary treewidth. Our main result is that \emph{any
reasonable} algorithmically useful and structurally nice digraph measure cannot
be substantially different from the treewidth of the underlying undirected
graph. Moreover, we introduce \emph{directed topological minors} and argue that
they are the weakest useful notion of minors for digraphs
- …